Documentation added and refactors

This commit is contained in:
Warky 2024-09-23 22:53:38 +02:00
parent 03e46e0582
commit ccfff48481
23 changed files with 7268 additions and 95 deletions

View File

@ -8,100 +8,9 @@ More detail will be added and real time testing is required.
To connect to Modbus and read information onto an SD card using an Arduino. To connect to Modbus and read information onto an SD card using an Arduino.
### Hardware needed: ### PM8000 Meter
See the information on the Schneider PowerLogic PM8000 [Source Code](https://git.warky.dev/vivarox/arduino/src/branch/main/firmware/modbus-sd/modbus-sd-pm8000/modbus-sd-pm8000.md).
1. Arduino Board
Recommended: Arduino MEGA 2560 (for more memory and I/O pins) or Arduino UNO (for simpler).
- [Arduino MEGA @ R377.20](https://www.robotics.org.za/MEGA-16U2?search=Arduino%20MEGA%202560)
- [UNO R3 with 16U2 USB Interface @ R151.00](https://www.robotics.org.za/UNOR3-16U2?search=%20Arduino%20UNO)
2. RS485 to TTL Module
Allows communication between the Arduino and Modbus devices using the RS485 protocol.
- [RS485 Module (TTL -> RS485) @ R25.30](https://www.robotics.org.za/RS485-MOD)
- [MAX485 Bus Transceiver (4 Pack) @ R16.00](https://www.robotics.org.za/MAX485-DIP?search=MAX485)
3. SD Card Module
Allows the Arduino to read from and write data to an SD card.
Standard SD card module that interfaces via SPI (Serial Peripheral Interface).
- [Micro SD Card Module @ R25.00](https://www.diyelectronics.co.za/store/memory/512-micro-sd-card-module.html?srsltid=AfmBOoptww8c6kx53xbZWiP2_C_qOE3r9xinyoCO-AZHrZkNQiyxU17c)
4. RTC Module
To keep track of the current date and time, even when the Arduino is powered off. This will allow your Arduino to timestamp the data it reads from Modbus and writes to the SD card.
- [DS3231 Real Time Clock Module @ R55.20](https://www.robotics.org.za/DS3231-MOD?search=DS3231)
5. Power Supply / Batteries
To power the Arduino and connected peripherals (RS485 module and SD card module).
- [AC Adapter 9V with barrel jack @ R60](https://www.robotics.org.za/AC-9V-2A-2155?search=%20Power%20Supply)
- [Panasonic CR2032 3V 225mAh Coin Cell Battery (5 Pack) @ R43.00](https://www.robotics.org.za/CR2032)
### Wiring
#### RS485 Module to Arduino:
1. RO (Receiver Output) to Arduino RX
2. DI (Driver Input) to Arduino TX
3. DE (Driver Enable) & RE (Receiver Enable) to an Arduino digital pin (control this pin in the code to switch between sending and receiving).
4. VCC to 5V on Arduino
5. GND to GND on Arduino
6. A & B (RS485 differential pair) to Modbus device.
#### SD Card Module to Arduino:
1. VCC to 5V on Arduino
2. GND to GND on Arduino
3. MOSI to MOSI (pin 51 on MEGA, pin 11 on UNO)
4. MISO to MISO (pin 50 on MEGA, pin 12 on UNO)
5. SCK to SCK (pin 52 on MEGA, pin 13 on UNO)
6. CS (Chip Select) to any available digital pin (e.g., pin 4).
#### Wiring the RTC Module
1. VCC to 5V on the Arduino.
2. GND to GND on the Arduino.
3. SDA to SDA (pin 20 on MEGA, pin A4 on UNO).
4. SCL to SCL (pin 21 on MEGA, pin A5 on UNO).
### Software
- Modbus Library: SimpleModbus or ModbusMaster.
- SD Library: The Arduino IDE comes with an SD library for interfacing with the SD card.
- RTC Library: Use the RTClib by Adafruit, which is compatible with both DS3231 and DS1307 modules.
#### Programming Workflow
- Initialize Modbus Communication:
- Initialize RTC Module: Set up the RTC to ensure it has the correct time.
- Use the Modbus library to set up communication parameters (e.g., baud rate, parity).
- Read Data from Modbus:
- Use the Modbus library to read the required data from the Modbus registers (e.g., meters, input registers).
- Get the Current Time from the RTC: Get the current date and time for logging.
- Write Data to SD Card:
- Use the SD library to open a file on the SD card, write the Modbus data, and then close the file.
#### Arduino Source Examples
[Example Arduino Prototype](https://git.warky.dev/wdevs/vivarox-ems-modbus/src/branch/main/Arduino/basic_read.cpp)
#### Addition Software Notes
- Ability to reset and write logs to newly inserted SD card.
- Writing to files stamped by day.
## Costs
This estimated cost of the hardware from supplier like Micro Robotics, excluding the labour to assemble:
R617.00 per unit using the Arduino MEGA
R374,5 per unit using the Arduino UNO
## Raspberry Pi Option: ## Raspberry Pi Option:

Binary file not shown.

Binary file not shown.

File diff suppressed because it is too large Load Diff

Binary file not shown.

Binary file not shown.

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,132 @@
#include <ModbusMaster.h>
#include <TinyGPS++.h>
#include <SoftwareSerial.h>
#include "register_map_pm8000.h"
#define SIM808_RX 2
#define SIM808_TX 3
#define RS485_DE_RE 4
#define RS485_RX 8
#define RS485_TX 7
#define LED_A 3
#define LED_B 5
SoftwareSerial sim808(SIM808_RX, SIM808_TX);
SoftwareSerial rs485(RS485_RX, RS485_TX);
ModbusMaster modbus;
TinyGPSPlus gps;
const char APN[] = "your_apn_here";
const char SERVER_URL[] = "http://your-server-url.com/upload";
const int SLAVE_ID = 101;
const long INTERVAL = 60000; // 1 minute
unsigned long lastSendTime = 0;
void setup() {
Serial.begin(9600);
sim808.begin(9600);
rs485.begin(9600);
pinMode(RS485_DE_RE, OUTPUT);
pinMode(LED_A, OUTPUT);
pinMode(LED_B, OUTPUT);
digitalWrite(RS485_DE_RE, LOW);
digitalWrite(LED_A, LOW);
digitalWrite(LED_B, LOW);
modbus.begin(SLAVE_ID, rs485);
// Initialize SIM808
sim808.println("AT+CGNSPWR=1"); // Turn on GNSS
delay(1000);
sim808.println("AT+CGNSSEQ=\"RMC\""); // Set NMEA sentence to RMC
delay(1000);
sim808.println("AT+CGDCONT=1,\"IP\",\"" + String(APN) + "\"");
delay(1000);
sim808.println("AT+HTTPINIT");
delay(1000);
Serial.println("Setup complete");
}
void loop() {
unsigned long currentTime = millis();
// Read GPS data
while (sim808.available()) {
gps.encode(sim808.read());
}
if (currentTime - lastSendTime >= INTERVAL) {
lastSendTime = currentTime;
String data = createDataString();
sendDataToServer(data);
}
}
String createDataString() {
String data = "";
// Add GPS data
if (gps.location.isValid()) {
data += String(gps.location.lat(), 6) + "," + String(gps.location.lng(), 6) + ",";
} else {
data += "0.000000,0.000000,";
}
// Read Modbus registers
for (int i = 0; i < sizeof(registers) / sizeof(registers[0]); i++) {
uint16_t result = modbus.readHoldingRegisters(registers[i].address - 1, 2);
if (result == modbus.ku8MBSuccess) {
switch (registers[i].type) {
case 2: // Float
data += String(modbus.getResponseBuffer(0)) + ",";
break;
case 1: // Integer
data += String(modbus.getResponseBuffer(0)) + ",";
break;
case 0: // Long
uint32_t longValue = (modbus.getResponseBuffer(0) << 16) | modbus.getResponseBuffer(1);
data += String(longValue) + ",";
break;
}
} else {
data += "ERROR,";
digitalWrite(LED_B, HIGH);
}
}
return data;
}
void sendDataToServer(String data) {
sim808.println("AT+HTTPDATA=" + String(data.length()) + ",10000");
delay(1000);
sim808.println(data);
delay(1000);
sim808.println("AT+HTTPACTION=1"); // POST request
// Wait for response
unsigned long start = millis();
while (millis() - start < 10000) {
if (sim808.available()) {
String response = sim808.readString();
if (response.indexOf("+HTTPACTION: 1,200") != -1) {
digitalWrite(LED_A, HIGH);
delay(200);
digitalWrite(LED_A, LOW);
Serial.println("Data sent successfully");
return;
}
}
}
digitalWrite(LED_B, HIGH);
delay(200);
digitalWrite(LED_B, LOW);
Serial.println("Failed to send data");
}

View File

@ -0,0 +1,216 @@
# Modbus Reading and GSM/GPS Data Logging for Schneider PowerLogic PM8000 using SIM808 Breakout - GSM & GPS, BAT Input
This is a specification and implementation of an Arduino-based Modbus data logger with GSM data transmission and GPS location tracking for the Schneider PowerLogic PM8000. This software is designed for Vivarox EMS and only Vivarox has the right to use and modify this software.
## Arduino Implementation:
This project uses an Arduino to connect to Modbus devices, read information, transmit it via GSM to a remote server, and provide GPS location data.
### Hardware needed:
1. Arduino Board
Recommended: Arduino MEGA 2560 (for more memory and I/O pins) or Arduino UNO (for simpler projects).
2. RS485 to TTL Module
Allows communication between the Arduino and Modbus devices using the RS485 protocol.
3. SIM808 Breakout - GSM & GPS, BAT Input
Enables the Arduino to send data over cellular networks and provide GPS location data.
4. Power Supply
To power the Arduino and connected peripherals. The SIM808 module requires a dedicated power supply capable of providing up to 2A current.
5. LED Indicators
Two LEDs for status indication.
6. Capacitors
100uF and 10uF capacitors for power supply stabilization.
7. GPS Antenna
For receiving GPS signals.
### Wiring
#### Wiring Diagram
```
Arduino Mega/Uno SIM808 Breakout Description
----------------- --------------- -----------
5V ----> VCC Power supply (via 2A dedicated supply)
GND ----> GND Ground
2 (RX) <---- TX SIM808 TX to Arduino RX
3 (TX) ----> RX Arduino TX to SIM808 RX
7 ----> DI (RS485) RS485 Driver Input
8 <---- RO (RS485) RS485 Receiver Output
4 ----> DE/RE (RS485) RS485 Driver Enable/Receiver Enable
3 ----> LED A Status LED A
5 ----> LED B Status LED B
Power Supply
------------
VCC ----> + (2A) Dedicated 2A power supply positive
GND ----> - (GND) Dedicated 2A power supply ground
Capacitors
----------
VCC ----|(---- GND 100uF capacitor
VCC ---||---- GND 10uF capacitor
GPS Antenna
|
|
[SIM808 Breakout Module]
```
#### Wiring Notes:
1. Ensure the power supply can provide 2A current.
2. Place the 100uF and 10uF capacitors as close to the SIM808 module's power pins as possible.
3. The RS485 connections are optional and depend on your specific requirements.
4. LEDs should be connected with appropriate current-limiting resistors (not shown in diagram).
5. The SIM808 module's GPS antenna should be connected securely.
6. Double-check all connections before powering on the system.
### Software
- Modbus Library: ModbusMaster
- GSM/GPS Library: TinyGSM (recommended for SIM808)
- NeoSWSerial: For better latency on software serial communication with Modbus
### Implementation Details
1. Modbus Configuration:
- Slave ID: 101
- Baud Rate: 9600
- Register map: Defined in separate "register_map_pm8000.h" file
2. Data Logging and Transmission:
- Frequency: Readings taken and transmitted every minute
- Data Format: CSV (Comma-Separated Values) string
- Data Structure: Timestamp, GPS coordinates, followed by register values
- Header Row: Includes register addresses for easy identification
3. Register Types Supported:
- Float (32-bit)
- Integer (32-bit)
- String (up to 20 characters)
4. Error Handling and Status Indication:
- LED A: Indicates successful data transmission
- LED B: Indicates errors (e.g., GSM issues, Modbus communication errors)
- Serial output for debugging (9600 baud)
5. GPS Functionality:
- Provides real-time location data
- Supports various NMEA sentences (GGA, GSA, GSV, RMC)
- Can be used for geofencing applications
6. Special Features:
- Robust error handling for GSM/GPS and Modbus communication
- Header sent once at the beginning of each session
- Configurable APN and server URL
- GPS power saving mode available
### Programming Workflow
1. Initialize hardware (SIM808 module, RS485 module)
2. Set up Modbus communication parameters
3. Configure GSM and GPS settings
4. Enter main loop:
- Read data from Modbus registers
- Obtain GPS location
- Format data into CSV string including GPS coordinates
- Send data via GSM to server
- Handle any errors and provide status indication via LEDs
- Delay for 1 minute before next reading and transmission
## Memory Limitations and Register Customization
### Memory Constraints
The Arduino, particularly models like the UNO and MEGA, has limited memory available for storing program code and variables. This limitation affects the number of Modbus registers that can be defined and read in a single project.
- Arduino UNO: 32 KB Flash (program storage), 2 KB SRAM
- Arduino MEGA: 256 KB Flash, 8 KB SRAM
Due to these constraints, the number of registers that can be defined in the `register_map_pm8000.h` file is not unlimited. The exact number will depend on the complexity of your code and other libraries used.
### Customizing the Register Map
To adapt this project to your specific needs, you can modify the `register_map_pm8000.h` file. This file contains the definitions of Modbus registers to be read by the Arduino.
To customize the register map:
1. Open the `register_map_pm8000.h` file in your Arduino IDE or text editor.
2. Locate the `registers` array in the file. It should look something like this:
```cpp
const RegisterInfo registers[] PROGMEM = {
{40001, 2}, // Example register
{40003, 1},
// ... other registers ...
};
```
3. To remove a register, simply comment out its line by adding `//` at the beginning:
```cpp
const RegisterInfo registers[] PROGMEM = {
{40001, 2}, // Example register
// {40003, 1}, // This register is now commented out and won't be read
// ... other registers ...
};
```
4. To add a new register, add a new line to the array with the register address and type:
```cpp
const RegisterInfo registers[] PROGMEM = {
{40001, 2}, // Example register
{40003, 1},
{40005, 2}, // New register added
// ... other registers ...
};
```
5. Remember to keep the array syntax correct, with commas between entries and a semicolon at the end of the array.
## Best Practices
- Start by commenting out registers you don't need before adding new ones.
- If you're using an Arduino UNO, you may need to be more selective about which registers to include due to memory constraints.
- Test your modifications incrementally to ensure the Arduino can handle the memory load.
- If you need to read a large number of registers, consider using an Arduino MEGA or a more powerful microcontroller.
- Ensure your GSM data plan can handle the amount of data being transmitted.
- Regularly check your server to ensure data is being received correctly.
- Position the GPS antenna with a clear view of the sky for best performance.
## Important AT Commands for SIM808
Here are some important AT commands used in this project:
1. `AT+CGNSPWR=1`: Turn on GNSS power supply.
2. `AT+CGNSSEQ="RMC"`: Set the last NMEA sentence to RMC (Recommended Minimum Specific GNSS Data).
3. `AT+CGNSINF`: Get GNSS navigation information.
4. `AT+CGNSURC=2`: Set URC reporting every 2 GNSS fixes.
5. `AT+CGDCONT=1,"IP","APN_NAME"`: Set the APN for your cellular provider.
6. `AT+HTTPINIT`: Initialize HTTP service.
7. `AT+HTTPSSL=1`: Enable SSL for HTTPS connections (if required).
8. `AT+HTTPPARA="URL","http://your-server-url.com/upload"`: Set the server URL.
9. `AT+HTTPDATA=<size>,10000`: Prepare to send HTTP POST data.
10. `AT+HTTPACTION=1`: Send HTTP POST request.
Remember to replace "APN_NAME" and "http://your-server-url.com/upload" with your specific values.
## Troubleshooting
1. If you encounter communication issues, double-check your wiring and ensure all connections are secure.
2. Verify that your APN settings are correct for your cellular provider.
3. If the module isn't responding, try resetting it and check your power supply.
4. Use AT commands like `AT+CSQ` to check signal strength and `AT+CREG?` to check network registration status.
5. If GPS data isn't being received, ensure the GPS antenna has a clear view of the sky.
6. If data isn't being sent, verify your TCP connection settings and ensure you have an active data plan.
7. Use `AT+CGNSINF` to check GPS fix status and information.
By carefully managing the registers in the `register_map_pm8000.h` file and configuring your SIM808 settings, you can customize this Modbus reader to suit your specific requirements while staying within the memory limitations of your Arduino board and optimizing data transmission and GPS functionality.

View File

@ -0,0 +1,190 @@
# Modbus Reading for Schneider PowerLogic PM8000
This is a specification and implementation of the Arduino-based Modbus data logger for the Schneider PowerLogic PM8000.
This software is designed for Vivarox EMS and only Vivarox has right to use and modify this software.
## Arduino Implementation:
This project uses an Arduino to connect to Modbus devices, read information, and log it onto an SD card with timestamps.
### Hardware needed:
1. Arduino Board
Recommended: Arduino MEGA 2560 (for more memory and I/O pins) or Arduino UNO (for simpler projects).
- [Arduino MEGA @ R377.20](https://www.robotics.org.za/MEGA-16U2?search=Arduino%20MEGA%202560)
- [UNO R3 with 16U2 USB Interface @ R151.00](https://www.robotics.org.za/UNOR3-16U2?search=%20Arduino%20UNO)
2. RS485 to TTL Module
Allows communication between the Arduino and Modbus devices using the RS485 protocol.
- [RS485 Module (TTL -> RS485) @ R25.30](https://www.robotics.org.za/RS485-MOD)
- [MAX485 Bus Transceiver (4 Pack) @ R16.00](https://www.robotics.org.za/MAX485-DIP?search=MAX485)
3. SD Card Module
Allows the Arduino to read from and write data to an SD card.
- [Micro SD Card Module @ R25.00](https://www.diyelectronics.co.za/store/memory/512-micro-sd-card-module.html?srsltid=AfmBOoptww8c6kx53xbZWiP2_C_qOE3r9xinyoCO-AZHrZkNQiyxU17c)
4. RTC Module
To keep track of the current date and time, even when the Arduino is powered off.
- [DS3231 Real Time Clock Module @ R55.20](https://www.robotics.org.za/DS3231-MOD?search=DS3231)
5. Power Supply
To power the Arduino and connected peripherals.
- [AC Adapter 9V with barrel jack @ R60](https://www.robotics.org.za/AC-9V-2A-2155?search=%20Power%20Supply)
6. LED Indicators
Two LEDs for status indication (not included in original cost estimate).
### Wiring
#### RS485 Module to Arduino:
1. RO (Receiver Output) to Arduino RX (pin 8)
2. DI (Driver Input) to Arduino TX (pin 7)
3. DE (Driver Enable) & RE (Receiver Enable) to Arduino digital pin 4
4. VCC to 5V on Arduino
5. GND to GND on Arduino
6. A & B (RS485 differential pair) to Modbus device
#### SD Card Module to Arduino:
1. VCC to 5V on Arduino
2. GND to GND on Arduino
3. MOSI to MOSI (pin 51 on MEGA, pin 11 on UNO)
4. MISO to MISO (pin 50 on MEGA, pin 12 on UNO)
5. SCK to SCK (pin 52 on MEGA, pin 13 on UNO)
6. CS (Chip Select) to digital pin 10
#### RTC Module to Arduino:
1. VCC to 5V on the Arduino
2. GND to GND on the Arduino
3. SDA to SDA (pin 20 on MEGA, pin A4 on UNO)
4. SCL to SCL (pin 21 on MEGA, pin A5 on UNO)
#### LED Indicators:
1. LED A to digital pin 3
2. LED B to digital pin 5
### Software
- Modbus Library: ModbusMaster
- SD Library: SdFat (more advanced than the standard SD library)
- RTC Library: RTClib by Adafruit
- NeoSWSerial: For better latency on software serial communication
### Implementation Details
1. Modbus Configuration:
- Slave ID: 101
- Baud Rate: 9600
- Register map: Defined in separate "register_map_pm8000.h" file
2. Data Logging:
- Frequency: Readings taken every second
- File Format: CSV (Comma-Separated Values)
- Filename: "pm8k_YYYYMMDD.csv" (generated daily based on current date)
- Data Structure: Timestamp, followed by register values
- Header Row: Includes register addresses for easy identification
3. Register Types Supported:
- Float (32-bit)
- Integer (32-bit)
- Long (64-bit)
- String (up to 20 characters)
4. Error Handling and Status Indication:
- LED A: Indicates successful data writing and transmission
- LED B: Indicates errors (e.g., SD card issues, RTC problems, Modbus communication errors)
- Serial output for debugging (9600 baud)
5. Special Features:
- Automatic creation of new log file on date change
- Header row written only once per file
- Robust error handling for SD card, RTC, and Modbus communication
### Programming Workflow
1. Initialize hardware (RTC, SD card, RS485 module)
2. Set up Modbus communication parameters
3. Enter main loop:
- Read current time from RTC
- Read data from Modbus registers
- Write timestamped data to SD card
- Handle any errors and provide status indication via LEDs
- Delay for 1 second before next reading
## Costs
Estimated cost of the hardware from suppliers like Micro Robotics, excluding labor to assemble:
- R617.00 per unit using the Arduino MEGA
- R374.50 per unit using the Arduino UNO
Note: These costs do not include the additional LEDs for status indication.
## Additional Notes
- The system is designed to reset and write logs to newly inserted SD cards automatically.
- Error handling includes visual feedback via LED indicators and detailed serial output for debugging.
- The modular design allows for easy expansion of register types and Modbus devices.
For more detailed implementation, refer to the [Source Code](https://git.warky.dev/vivarox/arduino/src/branch/main/firmware/modbus-sd/modbus-sd-pm8000/modbus-sd-pm8000.ino).
## Memory Limitations and Register Customization
### Memory Constraints
The Arduino, particularly models like the UNO and MEGA, has limited memory available for storing program code and variables. This limitation affects the number of Modbus registers that can be defined and read in a single project.
- Arduino UNO: 32 KB Flash (program storage), 2 KB SRAM
- Arduino MEGA: 256 KB Flash, 8 KB SRAM
Due to these constraints, the number of registers that can be defined in the `register_map_pm8000.h` file is not unlimited. The exact number will depend on the complexity of your code and other libraries used.
### Customizing the Register Map
To adapt this project to your specific needs, you can modify the `register_map_pm8000.h` file. This file contains the definitions of Modbus registers to be read by the Arduino.
To customize the register map:
1. Open the `register_map_pm8000.h` file in your Arduino IDE or text editor.
2. Locate the `registers` array in the file. It should look something like this:
```cpp
const RegisterInfo registers[] PROGMEM = {
{40001, 2}, // Example register
{40003, 1},
// ... other registers ...
};
```
3. To remove a register, simply comment out its line by adding `//` at the beginning:
```cpp
const RegisterInfo registers[] PROGMEM = {
{40001, 2}, // Example register
// {40003, 1}, // This register is now commented out and won't be read
// ... other registers ...
};
```
4. To add a new register, add a new line to the array with the register address and type:
```cpp
const RegisterInfo registers[] PROGMEM = {
{40001, 2}, // Example register
{40003, 1},
{40005, 2}, // New register added
// ... other registers ...
};
```
5. Remember to keep the array syntax correct, with commas between entries and a semicolon at the end of the array.
## Best Practices
- Start by commenting out registers you don't need before adding new ones.
- If you're using an Arduino UNO, you may need to be more selective about which registers to include due to memory constraints.
- Test your modifications incrementally to ensure the Arduino can handle the memory load.
- If you need to read a large number of registers, consider using an Arduino MEGA or a more powerful microcontroller.
By carefully managing the registers in the `register_map_pm8000.h` file, you can customize this Modbus reader to suit your specific requirements while staying within the memory limitations of your Arduino board.

View File

@ -0,0 +1,602 @@
#include <stdint.h>
struct RegisterMap
{
uint16_t regaddr;
uint8_t regtype;
};
const PROGMEM RegisterMap registers[] = {
//{ 30, 5} , // Name: Meter Name (DeviceName) - [30,20] as UTF8
//{ 50, 5} , // Name: Meter Model (DeviceType) - [50,20] as UTF8
{ 1837, 1} , // Name: Year (Year) - [1837,1] as INT16U
{ 1838, 1} , // Name: Month (Month) - [1838,1] as INT16U
{ 1839, 1} , // Name: Day (Day) - [1839,1] as INT16U
{ 1840, 1} , // Name: Hour (Hour) - [1840,1] as INT16U
{ 1841, 1} , // Name: Minute (Minute) - [1841,1] as INT16U
{ 2700, 2} , // Name: Active Energy Delivered (Into Load) (kWh del) - [2700,2] as FLOAT32
{ 2702, 2} , // Name: Active Energy Received (Out of Load) (kWh rec) - [2702,2] as FLOAT32
{ 2704, 2} , // Name: Active Energy Delivered + Received (kWh del+rec) - [2704,2] as FLOAT32
{ 2706, 2} , // Name: Active Energy Delivered- Received (kWh del-rec) - [2706,2] as FLOAT32
{ 2708, 2} , // Name: Reactive Energy Delivered (kVARh del) - [2708,2] as FLOAT32
{ 2710, 2} , // Name: Reactive Energy Received (kVARh rec) - [2710,2] as FLOAT32
{ 2712, 2} , // Name: Reactive Energy Delivered + Received (kVARh del+rec) - [2712,2] as FLOAT32
{ 2714, 2} , // Name: Reactive Energy Delivered - Received (kVARh del-rec) - [2714,2] as FLOAT32
{ 2716, 2} , // Name: Apparent Energy Delivered (kVAh del) - [2716,2] as FLOAT32
{ 2718, 2} , // Name: Apparent Energy Received (kVAh rec) - [2718,2] as FLOAT32
{ 2720, 2} , // Name: Apparent Energy Delivered + Received (kVAh del+rec) - [2720,2] as FLOAT32
{ 2722, 2} , // Name: Apparent Energy Delivered - Received (kVAh del-rec) - [2722,2] as FLOAT32
{ 2724, 2} , // Name: Active Energy in Quadrant I (kWh Q1) - [2724,2] as FLOAT32
{ 2726, 2} , // Name: Active Energy in Quadrant II (kWh Q2) - [2726,2] as FLOAT32
{ 2728, 2} , // Name: Active Energy in Quadrant III (kWh Q3) - [2728,2] as FLOAT32
{ 2730, 2} , // Name: Active Energy in Quadrant IV (kWh Q4) - [2730,2] as FLOAT32
{ 2732, 2} , // Name: Reactive Energy in Quadrant I (kVARh Q1) - [2732,2] as FLOAT32
{ 2734, 2} , // Name: Reactive Energy in Quadrant II (kVARh Q2) - [2734,2] as FLOAT32
{ 2736, 2} , // Name: Reactive Energy in Quadrant III (kVARh Q3) - [2736,2] as FLOAT32
{ 2738, 2} , // Name: Reactive Energy in Quadrant IV (kVARh Q4) - [2738,2] as FLOAT32
{ 2740, 2} , // Name: Apparent Energy in Quadrant I (kVAh Q1) - [2740,2] as FLOAT32
{ 2742, 2} , // Name: Apparent Energy in Quadrant II (kVAh Q2) - [2742,2] as FLOAT32
{ 2744, 2} , // Name: Apparent Energy in Quadrant III (kVAh Q3) - [2744,2] as FLOAT32
{ 2746, 2} , // Name: Apparent Energy in Quadrant IV (kVAh Q4) - [2746,2] as FLOAT32
{ 2748, 2} , // Name: Conditional Active Energy Delivered (Into Load) (Cnd kWh del) - [2748,2] as FLOAT32
{ 2750, 2} , // Name: Conditional Active Energy Received (Out of Load) (Cnd kWh rec) - [2750,2] as FLOAT32
{ 2754, 2} , // Name: Active Energy Delivered - Received, Conditional (Cnd kWh d-r) - [2754,2] as FLOAT32
{ 2756, 2} , // Name: Conditional Reactive Energy In (Delivered) (Cnd kVARh del) - [2756,2] as FLOAT32
{ 2758, 2} , // Name: Conditional Reactive Energy Out (Received) (Cnd kVARh rec) - [2758,2] as FLOAT32
{ 2762, 2} , // Name: Reactive Energy Delivered - Received, Conditional (Cnd kVARh d-r) - [2762,2] as FLOAT32
{ 2768, 2} , // Name: Apparent Energy Delivered + Received, Conditional (Cnd kVAh d+r) - [2768,2] as FLOAT32
{ 2772, 2} , // Name: Active Energy Delivered , Last Complete Interval (Inc kWh del C) - [2772,2] as FLOAT32
{ 2774, 2} , // Name: Active Energy Received , Last Complete Interval (Inc kWh rec C) - [2774,2] as FLOAT32
{ 2776, 2} , // Name: Active Energy Delivered - Received , Last Complete Interval (Inc kWh d-r C) - [2776,2] as FLOAT32
{ 2778, 2} , // Name: Reactive Energy Delivered , Last Complete Interval (Inc kVARh del C) - [2778,2] as FLOAT32
{ 2780, 2} , // Name: Reactive Energy Received , Last Complete Interval (Inc kVARh rec C) - [2780,2] as FLOAT32
{ 2782, 2} , // Name: Reactive Energy Delivered - Received , Last Complete Interval (Inc kVARh d-r C) - [2782,2] as FLOAT32
{ 2784, 2} , // Name: Apparent Energy Delivered + Received , Last Complete Interval (Inc kVAh d+r C) - [2784,2] as FLOAT32
{ 2786, 2} , // Name: Active Energy Delivered , Present Interval (Inc kWh del) - [2786,2] as FLOAT32
{ 2788, 2} , // Name: Active Energy Received , Present Interval (Inc kWh rec) - [2788,2] as FLOAT32
{ 2790, 2} , // Name: Active Energy Delivered - Received , Present Interval (Inc kWh d-r) - [2790,2] as FLOAT32
{ 2792, 2} , // Name: Reactive Energy Delivered , Present Interval (Inc kVARh del) - [2792,2] as FLOAT32
{ 2794, 2} , // Name: Reactive Energy Received , Present Interval (Inc kVARh rec) - [2794,2] as FLOAT32
{ 2796, 2} , // Name: Reactive Energy Delivered - Received , Present Interval (Inc kVARh d-r) - [2796,2] as FLOAT32
{ 2798, 2} , // Name: Apparent Energy Delivered + Received , Present Interval (Inc kVAh d+r) - [2798,2] as FLOAT32
{ 2800, 2} , // Name: Active Energy Delivered Interval (kWh del int) - [2800,2] as FLOAT32
{ 2802, 2} , // Name: Active Energy Received Interval (kWh rec int) - [2802,2] as FLOAT32
{ 2804, 2} , // Name: Reactive Energy Delivered Interval (kVARh del int) - [2804,2] as FLOAT32
{ 2806, 2} , // Name: Reactive Energy Received Interval (kVARh rec int) - [2806,2] as FLOAT32
{ 2808, 2} , // Name: Apparent Energy Delivered Interval (kVAh del int) - [2808,2] as FLOAT32
{ 2810, 2} , // Name: Apparent Energy Received Interval (kVAh rec int) - [2810,2] as FLOAT32
{ 3000, 2} , // Name: Current A (I a) - [3000,2] as FLOAT32
{ 3002, 2} , // Name: Current B (I b) - [3002,2] as FLOAT32
{ 3004, 2} , // Name: Current C (I c) - [3004,2] as FLOAT32
{ 3006, 2} , // Name: Current N (I 4) - [3006,2] as FLOAT32
{ 3008, 2} , // Name: Current G (I 5) - [3008,2] as FLOAT32
//{ 3010, 2} , // Name: Current Avg (I avg) - [3010,2] as FLOAT32
{ 3020, 2} , // Name: Voltage A-B (Vll ab) - [3020,2] as FLOAT32
{ 3022, 2} , // Name: Voltage B-C (Vll bc) - [3022,2] as FLOAT32
{ 3024, 2} , // Name: Voltage C-A (Vll ca) - [3024,2] as FLOAT32
//{ 3026, 2} , // Name: Voltage L-L Avg (Vll avg) - [3026,2] as FLOAT32
{ 3028, 2} , // Name: Voltage A-N (Vln a) - [3028,2] as FLOAT32
{ 3030, 2} , // Name: Voltage B-N (Vln b) - [3030,2] as FLOAT32
{ 3032, 2} , // Name: Voltage C-N (Vln c) - [3032,2] as FLOAT32
// { 3036, 2} , // Name: Voltage L-N Avg (Vln avg) - [3036,2] as FLOAT32
{ 3054, 2} , // Name: Active Power A (kW a) - [3054,2] as FLOAT32
{ 3056, 2} , // Name: Active Power B (kW b) - [3056,2] as FLOAT32
{ 3058, 2} , // Name: Active Power C (kW c) - [3058,2] as FLOAT32
{ 3060, 2} , // Name: Active Power Total (kW tot) - [3060,2] as FLOAT32
{ 3062, 2} , // Name: Reactive Power A (kVAR a) - [3062,2] as FLOAT32
{ 3064, 2} , // Name: Reactive Power B (kVAR b) - [3064,2] as FLOAT32
{ 3066, 2} , // Name: Reactive Power C (kVAR c) - [3066,2] as FLOAT32
{ 3068, 2} , // Name: Reactive Power Total (kVAR tot) - [3068,2] as FLOAT32
{ 3070, 2} , // Name: Apparent Power A (kVA a) - [3070,2] as FLOAT32
{ 3072, 2} , // Name: Apparent Power B (kVA b) - [3072,2] as FLOAT32
{ 3074, 2} , // Name: Apparent Power C (kVA c) - [3074,2] as FLOAT32
{ 3076, 2} , // Name: Apparent Power Total (kVA tot) - [3076,2] as FLOAT32
{ 3110, 2} , // Name: Frequency (Freq) - [3110,2] as FLOAT32
// { 3204, 3} , // Name: Active Energy Delivered (Into Load) (kWh del) - [3204,4] as INT64
// { 3208, 3} , // Name: Active Energy Received (Out of Load) (kWh rec) - [3208,4] as INT64
// { 3212, 3} , // Name: Active Energy Delivered + Received (kWh del+rec) - [3212,4] as INT64
// { 3216, 3} , // Name: Active Energy Delivered- Received (kWh del-rec) - [3216,4] as INT64
// { 3220, 3} , // Name: Reactive Energy Delivered (kVARh del) - [3220,4] as INT64
// { 3224, 3} , // Name: Reactive Energy Received (kVARh rec) - [3224,4] as INT64
// { 3228, 3} , // Name: Reactive Energy Delivered + Received (kVARh del+rec) - [3228,4] as INT64
// { 3232, 3} , // Name: Reactive Energy Delivered - Received (kVARh del-rec) - [3232,4] as INT64
// { 3236, 3} , // Name: Apparent Energy Delivered (kVAh del) - [3236,4] as INT64
// { 3240, 3} , // Name: Apparent Energy Received (kVAh rec) - [3240,4] as INT64
// { 3244, 3} , // Name: Apparent Energy Delivered + Received (kVAh del+rec) - [3244,4] as INT64
// { 3248, 3} , // Name: Apparent Energy Delivered - Received (kVAh del-rec) - [3248,4] as INT64
// { 3256, 3} , // Name: Active Energy in Quadrant I (kWh Q1) - [3256,4] as INT64
// { 3260, 3} , // Name: Active Energy in Quadrant II (kWh Q2) - [3260,4] as INT64
// { 3264, 3} , // Name: Active Energy in Quadrant III (kWh Q3) - [3264,4] as INT64
// { 3268, 3} , // Name: Active Energy in Quadrant IV (kWh Q4) - [3268,4] as INT64
// { 3272, 3} , // Name: Reactive Energy in Quadrant I (kVARh Q1) - [3272,4] as INT64
// { 3276, 3} , // Name: Reactive Energy in Quadrant II (kVARh Q2) - [3276,4] as INT64
// { 3280, 3} , // Name: Reactive Energy in Quadrant III (kVARh Q3) - [3280,4] as INT64
// { 3284, 3} , // Name: Reactive Energy in Quadrant IV (kVARh Q4) - [3284,4] as INT64
// { 3288, 3} , // Name: Apparent Energy in Quadrant I (kVAh Q1) - [3288,4] as INT64
// { 3292, 3} , // Name: Apparent Energy in Quadrant II (kVAh Q2) - [3292,4] as INT64
// { 3296, 3} , // Name: Apparent Energy in Quadrant III (kVAh Q3) - [3296,4] as INT64
// { 3300, 3} , // Name: Apparent Energy in Quadrant IV (kVAh Q4) - [3300,4] as INT64
// { 3358, 3} , // Name: Conditional Active Energy Delivered (Into Load) (Cnd kWh del) - [3358,4] as INT64
// { 3362, 3} , // Name: Conditional Active Energy Received (Out of Load) (Cnd kWh rec) - [3362,4] as INT64
// { 3370, 3} , // Name: Active Energy Delivered - Received, Conditional (Cnd kWh d-r) - [3370,4] as INT64
// { 3374, 3} , // Name: Conditional Reactive Energy In (Delivered) (Cnd kVARh del) - [3374,4] as INT64
// { 3378, 3} , // Name: Conditional Reactive Energy Out (Received) (Cnd kVARh rec) - [3378,4] as INT64
// { 3386, 3} , // Name: Reactive Energy Delivered - Received, Conditional (Cnd kVARh d-r) - [3386,4] as INT64
// { 3398, 3} , // Name: Apparent Energy Delivered + Received, Conditional (Cnd kVAh d+r) - [3398,4] as INT64
// { 3414, 3} , // Name: Active Energy Delivered , Last Complete Interval (Inc kWh del C) - [3414,4] as INT64
// { 3418, 3} , // Name: Active Energy Received , Last Complete Interval (Inc kWh rec C) - [3418,4] as INT64
// { 3422, 3} , // Name: Active Energy Delivered - Received , Last Complete Interval (Inc kWh d-r C) - [3422,4] as INT64
// { 3426, 3} , // Name: Reactive Energy Delivered , Last Complete Interval (Inc kVARh del C) - [3426,4] as INT64
// { 3430, 3} , // Name: Reactive Energy Received , Last Complete Interval (Inc kVARh rec C) - [3430,4] as INT64
// { 3434, 3} , // Name: Reactive Energy Delivered - Received , Last Complete Interval (Inc kVARh d-r C) - [3434,4] as INT64
// { 3438, 3} , // Name: Apparent Energy Delivered + Received , Last Complete Interval (Inc kVAh d+r C) - [3438,4] as INT64
// { 3442, 3} , // Name: Active Energy Delivered , Present Interval (Inc kWh del) - [3442,4] as INT64
// { 3446, 3} , // Name: Active Energy Received , Present Interval (Inc kWh rec) - [3446,4] as INT64
// { 3450, 3} , // Name: Active Energy Delivered - Received , Present Interval (Inc kWh d-r) - [3450,4] as INT64
// { 3454, 3} , // Name: Reactive Energy Delivered , Present Interval (Inc kVARh del) - [3454,4] as INT64
// { 3458, 3} , // Name: Reactive Energy Received , Present Interval (Inc kVARh rec) - [3458,4] as INT64
// { 3462, 3} , // Name: Reactive Energy Delivered - Received , Present Interval (Inc kVARh d-r) - [3462,4] as INT64
// { 3466, 3} , // Name: Apparent Energy Delivered + Received , Present Interval (Inc kVAh d+r) - [3466,4] as INT64
// { 3470, 3} , // Name: Active Energy Delivered Interval (kWh del int) - [3470,4] as INT64
// { 3474, 3} , // Name: Active Energy Received Interval (kWh rec int) - [3474,4] as INT64
// { 3478, 3} , // Name: Reactive Energy Delivered Interval (kVARh del int) - [3478,4] as INT64
// { 3482, 3} , // Name: Reactive Energy Received Interval (kVARh rec int) - [3482,4] as INT64
// { 3486, 3} , // Name: Apparent Energy Delivered Interval (kVAh del int) - [3486,4] as INT64
// { 3490, 3} , // Name: Apparent Energy Received Interval (kVAh rec int) - [3490,4] as INT64
// { 3650, 2} , // Name: Current A Squared Hours (MU Ia^2h) - [3650,2] as FLOAT32
// { 3652, 2} , // Name: Current B Square Hours (MU Ib^2h) - [3652,2] as FLOAT32
// { 3654, 2} , // Name: Current C Square Hours (MU Ic^2h) - [3654,2] as FLOAT32
// { 3656, 2} , // Name: Voltage A-B Square Hours (MU Vll ab^2h) - [3656,2] as FLOAT32
// { 3658, 2} , // Name: Voltage B-C Square Hours (MU Vll bc^2h) - [3658,2] as FLOAT32
// { 3660, 2} , // Name: Voltage C-A Square Hours (MU Vll ca^2h) - [3660,2] as FLOAT32
// { 3668, 2} , // Name: Current A Squared Hours (MU Ia^2h int) - [3668,2] as FLOAT32
// { 3670, 2} , // Name: Current B Square Hours (MU Ib^2h int) - [3670,2] as FLOAT32
// { 3672, 2} , // Name: Current C Square Hours (MU Ic^2h int) - [3672,2] as FLOAT32
// { 3674, 2} , // Name: Voltage A-B Square Hours (MU Vllab^2h int) - [3674,2] as FLOAT32
// { 3676, 2} , // Name: Voltage B-C Square Hours (MU Vllbc^2h int) - [3676,2] as FLOAT32
// { 3678, 2} , // Name: Voltage C-A Square Hours (MU Vllca^2h int) - [3678,2] as FLOAT32
// { 3680, 2} , // Name: Voltage A-N Square Hours (MU Vlna^2h int) - [3680,2] as FLOAT32
// { 3682, 2} , // Name: Voltage B-N Square Hours (MU Vlnb^2h int) - [3682,2] as FLOAT32
// { 3684, 2} , // Name: Voltage C-N Square Hours (MU Vlnc^2h int) - [3684,2] as FLOAT32
// { 4196, 3} , // Name: Active Energy Delivered Rate 1 (kWh del A) - [4196,4] as INT64
// { 4200, 3} , // Name: Active Energy Delivered Rate 2 (kWh del B) - [4200,4] as INT64
// { 4204, 3} , // Name: Active Energy Delivered Rate 3 (kWh del C) - [4204,4] as INT64
// { 4208, 3} , // Name: Active Energy Delivered Rate 4 (kWh del D) - [4208,4] as INT64
// { 4228, 3} , // Name: Active Energy Received Rate 1 (kWh rec A) - [4228,4] as INT64
// { 4232, 3} , // Name: Active Energy Received Rate 2 (kWh rec B) - [4232,4] as INT64
// { 4236, 3} , // Name: Active Energy Received Rate 3 (kWh rec C) - [4236,4] as INT64
// { 4240, 3} , // Name: Active Energy Received Rate 4 (kWh rec D) - [4240,4] as INT64
// { 4260, 3} , // Name: Reactive Energy Delivered Rate 1 (kVARh del A) - [4260,4] as INT64
// { 4264, 3} , // Name: Reactive Energy Delivered Rate 2 (kVARh del B) - [4264,4] as INT64
// { 4268, 3} , // Name: Reactive Energy Delivered Rate 3 (kVARh del C) - [4268,4] as INT64
// { 4272, 3} , // Name: Reactive Energy Delivered Rate 4 (kVARh del D) - [4272,4] as INT64
// { 4292, 3} , // Name: Reactive Energy Received Rate 1 (kVARh rec A) - [4292,4] as INT64
// { 4296, 3} , // Name: Reactive Energy Received Rate 2 (kVARh rec B) - [4296,4] as INT64
// { 4300, 3} , // Name: Reactive Energy Received Rate 3 (kVARh rec C) - [4300,4] as INT64
// { 4304, 3} , // Name: Reactive Energy Received Rate 4 (kVARh rec D) - [4304,4] as INT64
// { 4324, 3} , // Name: Apparent Energy Delivered Rate 1 (kVAh del A) - [4324,4] as INT64
// { 4328, 3} , // Name: Apparent Energy Delivered Rate 2 (kVAh del B) - [4328,4] as INT64
// { 4332, 3} , // Name: Apparent Energy Delivered Rate 3 (kVAh del C) - [4332,4] as INT64
// { 4336, 3} , // Name: Apparent Energy Delivered Rate 4 (kVAh del D) - [4336,4] as INT64
// { 4356, 3} , // Name: Apparent Energy Received Rate 1 (kVAh rec A) - [4356,4] as INT64
// { 4360, 3} , // Name: Apparent Energy Received Rate 2 (kVAh rec B) - [4360,4] as INT64
// { 4364, 3} , // Name: Apparent Energy Received Rate 3 (kVAh rec C) - [4364,4] as INT64
// { 4368, 3} , // Name: Apparent Energy Received Rate 4 (kVAh rec D) - [4368,4] as INT64
// { 4800, 2} , // Name: Active Energy Delivered Rate 1 (kWh del A) - [4800,2] as FLOAT32
// { 4802, 2} , // Name: Active Energy Delivered Rate 2 (kWh del B) - [4802,2] as FLOAT32
// { 4804, 2} , // Name: Active Energy Delivered Rate 3 (kWh del C) - [4804,2] as FLOAT32
// { 4806, 2} , // Name: Active Energy Delivered Rate 4 (kWh del D) - [4806,2] as FLOAT32
// { 4816, 2} , // Name: Active Energy Received Rate 1 (kWh rec A) - [4816,2] as FLOAT32
// { 4818, 2} , // Name: Active Energy Received Rate 2 (kWh rec B) - [4818,2] as FLOAT32
// { 4820, 2} , // Name: Active Energy Received Rate 3 (kWh rec C) - [4820,2] as FLOAT32
// { 4822, 2} , // Name: Active Energy Received Rate 4 (kWh rec D) - [4822,2] as FLOAT32
// { 4832, 2} , // Name: Reactive Energy Delivered Rate 1 (kVARh del A) - [4832,2] as FLOAT32
// { 4834, 2} , // Name: Reactive Energy Delivered Rate 2 (kVARh del B) - [4834,2] as FLOAT32
// { 4836, 2} , // Name: Reactive Energy Delivered Rate 3 (kVARh del C) - [4836,2] as FLOAT32
// { 4838, 2} , // Name: Reactive Energy Delivered Rate 4 (kVARh del D) - [4838,2] as FLOAT32
// { 4848, 2} , // Name: Reactive Energy Received Rate 1 (kVARh rec A) - [4848,2] as FLOAT32
// { 4850, 2} , // Name: Reactive Energy Received Rate 2 (kVARh rec B) - [4850,2] as FLOAT32
// { 4852, 2} , // Name: Reactive Energy Received Rate 3 (kVARh rec C) - [4852,2] as FLOAT32
// { 4854, 2} , // Name: Reactive Energy Received Rate 4 (kVARh rec D) - [4854,2] as FLOAT32
// { 4864, 2} , // Name: Apparent Energy Delivered Rate 1 (kVAh del A) - [4864,2] as FLOAT32
// { 4866, 2} , // Name: Apparent Energy Delivered Rate 2 (kVAh del B) - [4866,2] as FLOAT32
// { 4868, 2} , // Name: Apparent Energy Delivered Rate 3 (kVAh del C) - [4868,2] as FLOAT32
// { 4870, 2} , // Name: Apparent Energy Delivered Rate 4 (kVAh del D) - [4870,2] as FLOAT32
// { 4880, 2} , // Name: Apparent Energy Received Rate 1 (kVAh rec A) - [4880,2] as FLOAT32
// { 4882, 2} , // Name: Apparent Energy Received Rate 2 (kVAh rec B) - [4882,2] as FLOAT32
// { 4884, 2} , // Name: Apparent Energy Received Rate 3 (kVAh rec C) - [4884,2] as FLOAT32
// { 4886, 2} , // Name: Apparent Energy Received Rate 4 (kVAh rec D) - [4886,2] as FLOAT32
// { 14045, 2} , // Name: Pickup Setpoint (Over I 4 High Limit) - [14045,2] as FLOAT32
// { 14049, 2} , // Name: Dropout Setpoint (Over I 4 Low Limit) - [14049,2] as FLOAT32
// { 14325, 2} , // Name: Pickup Setpoint (Over kW sd High Limit) - [14325,2] as FLOAT32
// { 14329, 2} , // Name: Dropout Setpoint (Over kW sd Low Limit) - [14329,2] as FLOAT32
// { 14585, 2} , // Name: Pickup Setpoint (Over I a High Limit) - [14585,2] as FLOAT32
// { 14589, 2} , // Name: Dropout Setpoint (Over I a Low Limit) - [14589,2] as FLOAT32
// { 14605, 2} , // Name: Pickup Setpoint (Over I b High Limit) - [14605,2] as FLOAT32
// { 14609, 2} , // Name: Dropout Setpoint (Over I b Low Limit) - [14609,2] as FLOAT32
// { 14625, 2} , // Name: Pickup Setpoint (Over I c High Limit) - [14625,2] as FLOAT32
// { 14629, 2} , // Name: Dropout Setpoint (Over I c Low Limit) - [14629,2] as FLOAT32
// { 21000, 2} , // Name: HS Current A (HS I a) - [21000,2] as FLOAT32
// { 21002, 2} , // Name: HS Current B (HS I b) - [21002,2] as FLOAT32
// { 21004, 2} , // Name: HS Current C (HS I c) - [21004,2] as FLOAT32
// { 21006, 2} , // Name: HS Current N (HS I 4) - [21006,2] as FLOAT32
// { 21008, 2} , // Name: HS Current G (HS I 5) - [21008,2] as FLOAT32
// { 21010, 2} , // Name: HS Current Avg (HS I avg) - [21010,2] as FLOAT32
// { 21016, 2} , // Name: HS Frequency (HS Freq) - [21016,2] as FLOAT32
// { 21018, 2} , // Name: HS Voltage, A-B (HS Vll ab) - [21018,2] as FLOAT32
// { 21020, 2} , // Name: HS Voltage, B-C (HS Vll bc) - [21020,2] as FLOAT32
// { 21022, 2} , // Name: HS Voltage, C-A (HS Vll ca) - [21022,2] as FLOAT32
// { 21024, 2} , // Name: HS Voltage, L-L Average (HS Vll avg) - [21024,2] as FLOAT32
// { 21026, 2} , // Name: HS Voltage, A-N (HS Vln a) - [21026,2] as FLOAT32
// { 21028, 2} , // Name: HS Voltage, B-N (HS Vln b) - [21028,2] as FLOAT32
// { 21030, 2} , // Name: HS Voltage, C-N (HS Vln c) - [21030,2] as FLOAT32
// { 21034, 2} , // Name: HS Voltage, L-N Average (HS Vln avg) - [21034,2] as FLOAT32
// { 21040, 2} , // Name: HS Active Power A (HS kW a) - [21040,2] as FLOAT32
// { 21042, 2} , // Name: HS Active Power B (HS kW b) - [21042,2] as FLOAT32
// { 21044, 2} , // Name: HS Active Power C (HS kW c) - [21044,2] as FLOAT32
// { 21046, 2} , // Name: HS Active Power Total (HS kW tot) - [21046,2] as FLOAT32
// { 21048, 2} , // Name: HS Reactive Power A (HS kVAR a) - [21048,2] as FLOAT32
// { 21050, 2} , // Name: HS Reactive Power B (HS kVAR b) - [21050,2] as FLOAT32
// { 21052, 2} , // Name: HS Reactive Power C (HS kVAR c) - [21052,2] as FLOAT32
// { 21054, 2} , // Name: HS Reactive Power Total (HS kVAR tot) - [21054,2] as FLOAT32
// { 21056, 2} , // Name: HS Apparent Power A (HS kVA a) - [21056,2] as FLOAT32
// { 21058, 2} , // Name: HS Apparent Power B (HS kVA b) - [21058,2] as FLOAT32
// { 21060, 2} , // Name: HS Apparent Power C (HS kVA c) - [21060,2] as FLOAT32
// { 21062, 2} , // Name: HS Apparent Power Total (HS kVA tot) - [21062,2] as FLOAT32
// { 21358, 2} , // Name: K-Factor A (I1 K Factor) - [21358,2] as FLOAT32
// { 21360, 2} , // Name: K-Factor B (I2 K Factor) - [21360,2] as FLOAT32
// { 21362, 2} , // Name: K-Factor C (I3 K Factor) - [21362,2] as FLOAT32
// { 27218, 2} , // Name: Min Current A (I a mn) - [27218,2] as FLOAT32
// { 27220, 2} , // Name: Min Current B (I b mn) - [27220,2] as FLOAT32
// { 27222, 2} , // Name: Min Current C (I c mn) - [27222,2] as FLOAT32
// { 27224, 2} , // Name: Min Current N (I4 mn) - [27224,2] as FLOAT32
// { 27226, 2} , // Name: Min Current G (I5 mn) - [27226,2] as FLOAT32
// { 27228, 2} , // Name: Min Current Avg (I avg mn) - [27228,2] as FLOAT32
// { 27238, 2} , // Name: Min Voltage A-B (Vll ab mn) - [27238,2] as FLOAT32
// { 27240, 2} , // Name: Min Voltage B-C (Vll bc mn) - [27240,2] as FLOAT32
// { 27242, 2} , // Name: Min Voltage C-A (Vll ca mn) - [27242,2] as FLOAT32
// { 27244, 2} , // Name: Min Voltage L-L Avg (Vll avg mn) - [27244,2] as FLOAT32
// { 27246, 2} , // Name: Min Voltage A-N (Vln a mn) - [27246,2] as FLOAT32
// { 27248, 2} , // Name: Min Voltage B-N (Vln b mn) - [27248,2] as FLOAT32
// { 27250, 2} , // Name: Min Voltage C-N (Vln c mn) - [27250,2] as FLOAT32
// { 27254, 2} , // Name: Min Voltage L-N Avg (Vln avg mn) - [27254,2] as FLOAT32
// { 27278, 2} , // Name: Min Active Power Total (kW tot mn) - [27278,2] as FLOAT32
// { 27286, 2} , // Name: Min Reactive Power Total (kVAR tot mn) - [27286,2] as FLOAT32
// { 27294, 2} , // Name: Min Apparent Power Total (kVA tot mn) - [27294,2] as FLOAT32
// { 27616, 2} , // Name: Min Frequency (Freq mn) - [27616,2] as FLOAT32
// { 27644, 2} , // Name: Current A Low (I a low) - [27644,2] as FLOAT32
// { 27646, 2} , // Name: Current B Low (I b low) - [27646,2] as FLOAT32
// { 27648, 2} , // Name: Current C Low (I c low) - [27648,2] as FLOAT32
// { 27650, 2} , // Name: Current N Low (I4 low) - [27650,2] as FLOAT32
// { 27652, 2} , // Name: Current Avg Low (I avg low) - [27652,2] as FLOAT32
// { 27654, 2} , // Name: Voltage A-B Low (Vll ab low) - [27654,2] as FLOAT32
// { 27656, 2} , // Name: Voltage B-C Low (Vll bc low) - [27656,2] as FLOAT32
// { 27658, 2} , // Name: Voltage C-A Low (Vll ca low) - [27658,2] as FLOAT32
// { 27660, 2} , // Name: Voltage L-L Avg Low (Vll avg low) - [27660,2] as FLOAT32
// { 27672, 2} , // Name: Active Power Low (kW tot low) - [27672,2] as FLOAT32
// { 27674, 2} , // Name: Reactive Power Low (kVAR tot low) - [27674,2] as FLOAT32
// { 27676, 2} , // Name: Apparent Power Low (kVA tot low) - [27676,2] as FLOAT32
// { 27682, 2} , // Name: Frequency Low (Freq low) - [27682,2] as FLOAT32
// { 27694, 2} , // Name: Max Current A (I a mx) - [27694,2] as FLOAT32
// { 27696, 2} , // Name: Max Current B (I b mx) - [27696,2] as FLOAT32
// { 27698, 2} , // Name: Max Current C (I c mx) - [27698,2] as FLOAT32
// { 27700, 2} , // Name: Max Current N (I4 mx) - [27700,2] as FLOAT32
// { 27702, 2} , // Name: Max Current G (I5 mx) - [27702,2] as FLOAT32
// { 27704, 2} , // Name: Max Current Avg (I avg mx) - [27704,2] as FLOAT32
// { 27714, 2} , // Name: Max Voltage A-B (Vll ab mx) - [27714,2] as FLOAT32
// { 27716, 2} , // Name: Max Voltage B-C (Vll bc mx) - [27716,2] as FLOAT32
// { 27718, 2} , // Name: Max Voltage C-A (Vll ca mx) - [27718,2] as FLOAT32
// { 27720, 2} , // Name: Max Voltage L-L Avg (Vll avg mx) - [27720,2] as FLOAT32
// { 27722, 2} , // Name: Max Voltage A-N (Vln a mx) - [27722,2] as FLOAT32
// { 27724, 2} , // Name: Max Voltage B-N (Vln b mx) - [27724,2] as FLOAT32
// { 27726, 2} , // Name: Max Voltage C-N (Vln c mx) - [27726,2] as FLOAT32
// { 27730, 2} , // Name: Max Voltage L-N Avg (Vln avg mx) - [27730,2] as FLOAT32
// { 27754, 2} , // Name: Max Active Power Total (kW tot mx) - [27754,2] as FLOAT32
// { 27762, 2} , // Name: Max Reactive Power Total (kVAR tot mx) - [27762,2] as FLOAT32
// { 27770, 2} , // Name: Max Apparent Power Total (kVA tot mx) - [27770,2] as FLOAT32
// { 28092, 2} , // Name: Max Frequency (Freq mx) - [28092,2] as FLOAT32
// { 28120, 2} , // Name: Current A High (I a high) - [28120,2] as FLOAT32
// { 28122, 2} , // Name: Current B High (I b high) - [28122,2] as FLOAT32
// { 28124, 2} , // Name: Current C High (I c high) - [28124,2] as FLOAT32
// { 28126, 2} , // Name: Current N High (I 4 high) - [28126,2] as FLOAT32
// { 28128, 2} , // Name: Current Avg High (I avg high) - [28128,2] as FLOAT32
// { 28130, 2} , // Name: Voltage A-B High (Vll ab high) - [28130,2] as FLOAT32
// { 28132, 2} , // Name: Voltage B-C High (Vll bc high) - [28132,2] as FLOAT32
// { 28134, 2} , // Name: Voltage C-A High (Vll ca high) - [28134,2] as FLOAT32
// { 28136, 2} , // Name: Voltage L-L Avg High (Vll avg high) - [28136,2] as FLOAT32
// { 28162, 2} , // Name: Active Power High (kW tot high) - [28162,2] as FLOAT32
// { 28164, 2} , // Name: Reactive Power High (kVAR tot high) - [28164,2] as FLOAT32
// { 28166, 2} , // Name: Apparent Power High (kVA tot high) - [28166,2] as FLOAT32
// { 28172, 2} , // Name: Frequency High (Freq high) - [28172,2] as FLOAT32
// { 28180, 2} , // Name: Current A Mean (I a mean) - [28180,2] as FLOAT32
// { 28182, 2} , // Name: Current B Mean (I b mean) - [28182,2] as FLOAT32
// { 28184, 2} , // Name: Current C Mean (I c mean) - [28184,2] as FLOAT32
// { 28186, 2} , // Name: Current N Mean (I 4 mean) - [28186,2] as FLOAT32
// { 28188, 2} , // Name: Current Avg Mean (I avg mean) - [28188,2] as FLOAT32
// { 28190, 2} , // Name: Voltage A-B Mean (Vll ab mean) - [28190,2] as FLOAT32
// { 28192, 2} , // Name: Voltage B-C Mean (Vll bc mean) - [28192,2] as FLOAT32
// { 28194, 2} , // Name: Voltage C-A Mean (Vll ca mean) - [28194,2] as FLOAT32
// { 28196, 2} , // Name: Voltage L-L Avg Mean (Vll avg mean) - [28196,2] as FLOAT32
// { 28208, 2} , // Name: Active Power Mean (kW tot mean) - [28208,2] as FLOAT32
// { 28210, 2} , // Name: Reactive Power Mean (kVAR tot mean) - [28210,2] as FLOAT32
// { 28212, 2} , // Name: Apparent Power Mean (kVA tot mean) - [28212,2] as FLOAT32
// { 28218, 2} , // Name: Frequency Mean (Freq mean) - [28218,2] as FLOAT32
// { 29884, 2} , // Name: Current A Last Demand (I a sd) - [29884,2] as FLOAT32
// { 29886, 2} , // Name: Current A Predicted Demand (I a sd pred) - [29886,2] as FLOAT32
// { 29888, 0} , // Name: Current A Peak Demand (I a sd mx) - [29888,6] as TIMESTAMPED_FLOAT32
// { 29898, 2} , // Name: Current B Last Demand (I b sd) - [29898,2] as FLOAT32
// { 29900, 2} , // Name: Current B Predicted Demand (I b sd pred) - [29900,2] as FLOAT32
// { 29902, 0} , // Name: Current B Peak Demand (I b sd mx) - [29902,6] as TIMESTAMPED_FLOAT32
// { 29912, 2} , // Name: Current C Last Demand (I c sd) - [29912,2] as FLOAT32
// { 29914, 2} , // Name: Current C Predicted Demand (I c sd pred) - [29914,2] as FLOAT32
// { 29916, 0} , // Name: Current C Peak Demand (I c sd mx) - [29916,6] as TIMESTAMPED_FLOAT32
// { 29926, 2} , // Name: Current 4 Last Demand (I 4 sd) - [29926,2] as FLOAT32
// { 29928, 2} , // Name: Current 4 Predicted Demand (I 4 sd pred) - [29928,2] as FLOAT32
// { 29930, 0} , // Name: Current 4 Peak Demand (I 4 sd mx) - [29930,6] as TIMESTAMPED_FLOAT32
// { 29940, 2} , // Name: Current Avg Last Demand (I avg sd) - [29940,2] as FLOAT32
// { 29942, 2} , // Name: Current Avg Predicted Demand (I avg sd pred) - [29942,2] as FLOAT32
// { 29944, 0} , // Name: Current Avg Peak Demand (I avg sd mx) - [29944,6] as TIMESTAMPED_FLOAT32
// { 29954, 2} , // Name: Active Power Last Demand (kW sd del-rec) - [29954,2] as FLOAT32
// { 29956, 2} , // Name: Active Power Predicted Demand (kW pr del-rec) - [29956,2] as FLOAT32
// { 29958, 0} , // Name: Active Power Peak Demand (kW sd mx d-r) - [29958,6] as TIMESTAMPED_FLOAT32
// { 29968, 2} , // Name: Active Power Del Last Demand (kW sd del) - [29968,2] as FLOAT32
// { 29970, 2} , // Name: Active Power Del Predicted Demand (kW pr del) - [29970,2] as FLOAT32
// { 29972, 0} , // Name: Active Power Del Peak Demand (kW sd mx del) - [29972,6] as TIMESTAMPED_FLOAT32
// { 29982, 2} , // Name: Active Power Rec Last Demand (kW sd rec) - [29982,2] as FLOAT32
// { 29984, 2} , // Name: Active Power Rec Predicted Demand (kW pr rec) - [29984,2] as FLOAT32
// { 29986, 0} , // Name: Active Power Rec Peak Demand (kW sd mx rec) - [29986,6] as TIMESTAMPED_FLOAT32
// { 29996, 2} , // Name: Active Power Total Last Demand (kW sd del+rec) - [29996,2] as FLOAT32
// { 29998, 2} , // Name: Active Power Total Predicted Demand (kW pr del+rec) - [29998,2] as FLOAT32
// { 30000, 0} , // Name: Active Power Total Peak Demand (kW sd mx d+r) - [30000,6] as TIMESTAMPED_FLOAT32
// { 30010, 2} , // Name: Reactive Power Last Demand (kVAR sd del-rec) - [30010,2] as FLOAT32
// { 30012, 2} , // Name: Reactive Power Predicted Demand (kVAR pr del-rec) - [30012,2] as FLOAT32
// { 30014, 0} , // Name: Reactive Power Peak Demand (kVAR sd mx d-r) - [30014,6] as TIMESTAMPED_FLOAT32
// { 30024, 2} , // Name: Reactive Power Del Last Demand (kVAR sd del) - [30024,2] as FLOAT32
// { 30026, 2} , // Name: Reactive Power Del Predicted Demand (kVAR pr del) - [30026,2] as FLOAT32
// { 30028, 0} , // Name: Reactive Power Del Peak Demand (kVAR sd mx del) - [30028,6] as TIMESTAMPED_FLOAT32
// { 30038, 2} , // Name: Reactive Power Rec Last Demand (kVAR sd rec) - [30038,2] as FLOAT32
// { 30040, 2} , // Name: Reactive Power Rec Predicted Demand (kVAR pr rec) - [30040,2] as FLOAT32
// { 30042, 0} , // Name: Reactive Power Rec Peak Demand (kVAR sd mx rec) - [30042,6] as TIMESTAMPED_FLOAT32
// { 30052, 2} , // Name: Reactive Power Total Last Demand (kVAR sd del+rec) - [30052,2] as FLOAT32
// { 30054, 2} , // Name: Reactive Power Total Predicted Demand (kVAR pr del+rec) - [30054,2] as FLOAT32
// { 30056, 0} , // Name: Reactive Power Total Peak Demand (kVAR sd mx d+r) - [30056,6] as TIMESTAMPED_FLOAT32
// { 30066, 2} , // Name: Apparent Power Last Demand (kVA sd del-rec) - [30066,2] as FLOAT32
// { 30068, 2} , // Name: Apparent Power Predicted Demand (kVA pr del-rec) - [30068,2] as FLOAT32
// { 30070, 0} , // Name: Apparent Power Peak Demand (kVA sd mx d-r) - [30070,6] as TIMESTAMPED_FLOAT32
// { 30080, 2} , // Name: Apparent Power Del Last Demand (kVA sd del) - [30080,2] as FLOAT32
// { 30082, 2} , // Name: Apparent Power Del Predicted Demand (kVA pr del) - [30082,2] as FLOAT32
// { 30084, 0} , // Name: Apparent Power Del Peak Demand (kVA sd mx del) - [30084,6] as TIMESTAMPED_FLOAT32
// { 30094, 2} , // Name: Apparent Power Rec Last Demand (kVA sd rec) - [30094,2] as FLOAT32
// { 30096, 2} , // Name: Apparent Power Rec Predicted Demand (kVA pr rec) - [30096,2] as FLOAT32
// { 30098, 0} , // Name: Apparent Power Rec Peak Demand (kVA sd mx rec) - [30098,6] as TIMESTAMPED_FLOAT32
// { 30108, 2} , // Name: Apparent Power Total Last Demand (kVA sd del+rec) - [30108,2] as FLOAT32
// { 30110, 2} , // Name: Apparent Power Total Predicted Demand (kVA pr del+rec) - [30110,2] as FLOAT32
// { 30112, 0} , // Name: Apparent Power Total Peak Demand (kVA sd mx d+r) - [30112,6] as TIMESTAMPED_FLOAT32
// { 30222, 2} , // Name: Active Power Del A Last Demand (kW sd del A) - [30222,2] as FLOAT32
// { 30224, 2} , // Name: Active Power Del A Predicted Demand (kW pr del A) - [30224,2] as FLOAT32
// { 30226, 0} , // Name: Active Power Del A Peak Demand (kW sd mx del A) - [30226,6] as TIMESTAMPED_FLOAT32
// { 30236, 2} , // Name: Active Power Del B Last Demand (kW sd del B) - [30236,2] as FLOAT32
// { 30238, 2} , // Name: Active Power Del B Predicted Demand (kW pr del B) - [30238,2] as FLOAT32
// { 30240, 0} , // Name: Active Power Del B Peak Demand (kW sd mx del B) - [30240,6] as TIMESTAMPED_FLOAT32
// { 30250, 2} , // Name: Active Power Del C Last Demand (kW sd del C) - [30250,2] as FLOAT32
// { 30252, 2} , // Name: Active Power Del C Predicted Demand (kW pr del C) - [30252,2] as FLOAT32
// { 30254, 0} , // Name: Active Power Del C Peak Demand (kW sd mx del C) - [30254,6] as TIMESTAMPED_FLOAT32
// { 30264, 2} , // Name: Active Power Del D Last Demand (kW sd del D) - [30264,2] as FLOAT32
// { 30266, 2} , // Name: Active Power Del D Predicted Demand (kW pr del D) - [30266,2] as FLOAT32
// { 30268, 0} , // Name: Active Power Del D Peak Demand (kW sd mx del D) - [30268,6] as TIMESTAMPED_FLOAT32
// { 30278, 2} , // Name: Active Power Rec A Last Demand (kW sd rec A) - [30278,2] as FLOAT32
// { 30280, 2} , // Name: Active Power Rec A Predicted Demand (kW pr rec A) - [30280,2] as FLOAT32
// { 30282, 0} , // Name: Active Power Rec A Peak Demand (kW sd mx rec A) - [30282,6] as TIMESTAMPED_FLOAT32
// { 30292, 2} , // Name: Active Power Rec B Last Demand (kW sd rec B) - [30292,2] as FLOAT32
// { 30294, 2} , // Name: Active Power Rec B Predicted Demand (kW pr rec B) - [30294,2] as FLOAT32
// { 30296, 0} , // Name: Active Power Rec B Peak Demand (kW sd mx rec B) - [30296,6] as TIMESTAMPED_FLOAT32
// { 30306, 2} , // Name: Active Power Rec C Last Demand (kW sd rec C) - [30306,2] as FLOAT32
// { 30308, 2} , // Name: Active Power Rec C Predicted Demand (kW pr rec C) - [30308,2] as FLOAT32
// { 30310, 0} , // Name: Active Power Rec C Peak Demand (kW sd mx rec C) - [30310,6] as TIMESTAMPED_FLOAT32
// { 30320, 2} , // Name: Active Power Rec D Last Demand (kW sd rec D) - [30320,2] as FLOAT32
// { 30322, 2} , // Name: Active Power Rec D Predicted Demand (kW pr rec D) - [30322,2] as FLOAT32
// { 30324, 0} , // Name: Active Power Rec D Peak Demand (kW sd mx rec D) - [30324,6] as TIMESTAMPED_FLOAT32
// { 30334, 2} , // Name: Reactive Power Del A Last Demand (kVAR sd del A) - [30334,2] as FLOAT32
// { 30336, 2} , // Name: Reactive Power Del A Predicted Demand (kVAR pr del A) - [30336,2] as FLOAT32
// { 30338, 0} , // Name: Reactive Power Del A Peak Demand (kVAR sd mx d A) - [30338,6] as TIMESTAMPED_FLOAT32
// { 30348, 2} , // Name: Reactive Power Del B Last Demand (kVAR sd del B) - [30348,2] as FLOAT32
// { 30350, 2} , // Name: Reactive Power Del B Predicted Demand (kVAR pr del B) - [30350,2] as FLOAT32
// { 30352, 0} , // Name: Reactive Power Del B Peak Demand (kVAR sd mx d B) - [30352,6] as TIMESTAMPED_FLOAT32
// { 30362, 2} , // Name: Reactive Power Del C Last Demand (kVAR sd del C) - [30362,2] as FLOAT32
// { 30364, 2} , // Name: Reactive Power Del C Predicted Demand (kVAR pr del C) - [30364,2] as FLOAT32
// { 30366, 0} , // Name: Reactive Power Del C Peak Demand (kVAR sd mx d C) - [30366,6] as TIMESTAMPED_FLOAT32
// { 30376, 2} , // Name: Reactive Power Del D Last Demand (kVAR sd del D) - [30376,2] as FLOAT32
// { 30378, 2} , // Name: Reactive Power Del D Predicted Demand (kVAR pr del D) - [30378,2] as FLOAT32
// { 30380, 0} , // Name: Reactive Power Del D Peak Demand (kVAR sd mx d D) - [30380,6] as TIMESTAMPED_FLOAT32
// { 30390, 2} , // Name: Reactive Power Rec A Last Demand (kVAR sd rec A) - [30390,2] as FLOAT32
// { 30392, 2} , // Name: Reactive Power Rec A Predicted Demand (kVAR pr rec A) - [30392,2] as FLOAT32
// { 30394, 0} , // Name: Reactive Power Rec A Peak Demand (kVAR sd mx r A) - [30394,6] as TIMESTAMPED_FLOAT32
// { 30404, 2} , // Name: Reactive Power Rec B Last Demand (kVAR sd rec B) - [30404,2] as FLOAT32
// { 30406, 2} , // Name: Reactive Power Rec B Predicted Demand (kVAR pr rec B) - [30406,2] as FLOAT32
// { 30408, 0} , // Name: Reactive Power Rec B Peak Demand (kVAR sd mx r B) - [30408,6] as TIMESTAMPED_FLOAT32
// { 30418, 2} , // Name: Reactive Power Rec C Last Demand (kVAR sd rec C) - [30418,2] as FLOAT32
// { 30420, 2} , // Name: Reactive Power Rec C Predicted Demand (kVAR pr rec C) - [30420,2] as FLOAT32
// { 30422, 0} , // Name: Reactive Power Rec C Peak Demand (kVAR sd mx r C) - [30422,6] as TIMESTAMPED_FLOAT32
// { 30432, 2} , // Name: Reactive Power Rec D Last Demand (kVAR sd rec D) - [30432,2] as FLOAT32
// { 30434, 2} , // Name: Reactive Power Rec D Predicted Demand (kVAR pr rec D) - [30434,2] as FLOAT32
// { 30436, 0} , // Name: Reactive Power Rec D Peak Demand (kVAR sd mx r D) - [30436,6] as TIMESTAMPED_FLOAT32
// { 30446, 2} , // Name: Apparent Power Del A Last Demand (kVA sd del A) - [30446,2] as FLOAT32
// { 30448, 2} , // Name: Apparent Power Del A Predicted Demand (kVA pr del A) - [30448,2] as FLOAT32
// { 30450, 0} , // Name: Apparent Power Del A Peak Demand (kVA sd mx del A) - [30450,6] as TIMESTAMPED_FLOAT32
// { 30460, 2} , // Name: Apparent Power Del B Last Demand (kVA sd del B) - [30460,2] as FLOAT32
// { 30462, 2} , // Name: Apparent Power Del B Predicted Demand (kVA pr del B) - [30462,2] as FLOAT32
// { 30464, 0} , // Name: Apparent Power Del B Peak Demand (kVA sd mx del B) - [30464,6] as TIMESTAMPED_FLOAT32
// { 30474, 2} , // Name: Apparent Power Del C Last Demand (kVA sd del C) - [30474,2] as FLOAT32
// { 30476, 2} , // Name: Apparent Power Del C Predicted Demand (kVA pr del C) - [30476,2] as FLOAT32
// { 30478, 0} , // Name: Apparent Power Del C Peak Demand (kVA sd mx del C) - [30478,6] as TIMESTAMPED_FLOAT32
// { 30488, 2} , // Name: Apparent Power Del D Last Demand (kVA sd del D) - [30488,2] as FLOAT32
// { 30490, 2} , // Name: Apparent Power Del D Predicted Demand (kVA pr del D) - [30490,2] as FLOAT32
// { 30492, 0} , // Name: Apparent Power Del D Peak Demand (kVA sd mx del D) - [30492,6] as TIMESTAMPED_FLOAT32
// { 30502, 2} , // Name: Apparent Power Rec A Last Demand (kVA sd rec A) - [30502,2] as FLOAT32
// { 30504, 2} , // Name: Apparent Power Rec A Predicted Demand (kVA pr rec A) - [30504,2] as FLOAT32
// { 30506, 0} , // Name: Apparent Power Rec A Peak Demand (kVA sd mx rec A) - [30506,6] as TIMESTAMPED_FLOAT32
// { 30516, 2} , // Name: Apparent Power Rec B Last Demand (kVA sd rec B) - [30516,2] as FLOAT32
// { 30518, 2} , // Name: Apparent Power Rec B Predicted Demand (kVA pr rec B) - [30518,2] as FLOAT32
// { 30520, 0} , // Name: Apparent Power Rec B Peak Demand (kVA sd mx rec B) - [30520,6] as TIMESTAMPED_FLOAT32
// { 30530, 2} , // Name: Apparent Power Rec C Last Demand (kVA sd rec C) - [30530,2] as FLOAT32
// { 30532, 2} , // Name: Apparent Power Rec C Predicted Demand (kVA pr rec C) - [30532,2] as FLOAT32
// { 30534, 0} , // Name: Apparent Power Rec C Peak Demand (kVA sd mx rec C) - [30534,6] as TIMESTAMPED_FLOAT32
// { 30544, 2} , // Name: Apparent Power Rec D Last Demand (kVA sd rec D) - [30544,2] as FLOAT32
// { 30546, 2} , // Name: Apparent Power Rec D Predicted Demand (kVA pr rec D) - [30546,2] as FLOAT32
// { 30548, 0} , // Name: Apparent Power Rec D Peak Demand (kVA sd mx rec D) - [30548,6] as TIMESTAMPED_FLOAT32
// { 30558, 2} , // Name: Active Power Q1 Last Demand (kW sd Q1) - [30558,2] as FLOAT32
// { 30560, 2} , // Name: Active Power Q1 Predicted Demand (kW pr Q1) - [30560,2] as FLOAT32
// { 30562, 0} , // Name: Active Power Q1 Peak Demand (kW sd mx Q1) - [30562,6] as TIMESTAMPED_FLOAT32
// { 30572, 2} , // Name: Active Power Q2 Last Demand (kW sd Q2) - [30572,2] as FLOAT32
// { 30574, 2} , // Name: Active Power Q2 Predicted Demand (kW pr Q2) - [30574,2] as FLOAT32
// { 30576, 0} , // Name: Active Power Q2 Peak Demand (kW sd mx Q2) - [30576,6] as TIMESTAMPED_FLOAT32
// { 30586, 2} , // Name: Active Power Q3 Last Demand (kW sd Q3) - [30586,2] as FLOAT32
// { 30588, 2} , // Name: Active Power Q3 Predicted Demand (kW pr Q3) - [30588,2] as FLOAT32
// { 30590, 0} , // Name: Active Power Q3 Peak Demand (kW sd mx Q3) - [30590,6] as TIMESTAMPED_FLOAT32
// { 30600, 2} , // Name: Active Power Q4 Last Demand (kW sd Q4) - [30600,2] as FLOAT32
// { 30602, 2} , // Name: Active Power Q4 Predicted Demand (kW pr Q4) - [30602,2] as FLOAT32
// { 30604, 0} , // Name: Active Power Q4 Peak Demand (kW sd mx Q4) - [30604,6] as TIMESTAMPED_FLOAT32
// { 30614, 2} , // Name: Reactive Power Q1 Last Demand (kVAR sd Q1) - [30614,2] as FLOAT32
// { 30616, 2} , // Name: Reactive Power Q1 Predicted Demand (kVAR pr Q1) - [30616,2] as FLOAT32
// { 30618, 0} , // Name: Reactive Power Q1 Peak Demand (kVAR sd mx Q1) - [30618,6] as TIMESTAMPED_FLOAT32
// { 30628, 2} , // Name: Reactive Power Q2 Last Demand (kVAR sd Q2) - [30628,2] as FLOAT32
// { 30630, 2} , // Name: Reactive Power Q2 Predicted Demand (kVAR pr Q2) - [30630,2] as FLOAT32
// { 30632, 0} , // Name: Reactive Power Q2 Peak Demand (kVAR sd mx Q2) - [30632,6] as TIMESTAMPED_FLOAT32
// { 30642, 2} , // Name: Reactive Power Q3 Last Demand (kVAR sd Q3) - [30642,2] as FLOAT32
// { 30644, 2} , // Name: Reactive Power Q3 Predicted Demand (kVAR pr Q3) - [30644,2] as FLOAT32
// { 30646, 0} , // Name: Reactive Power Q3 Peak Demand (kVAR sd mx Q3) - [30646,6] as TIMESTAMPED_FLOAT32
// { 30656, 2} , // Name: Reactive Power Q4 Last Demand (kVAR sd Q4) - [30656,2] as FLOAT32
// { 30658, 2} , // Name: Reactive Power Q4 Predicted Demand (kVAR pr Q4) - [30658,2] as FLOAT32
// { 30660, 0} , // Name: Reactive Power Q4 Peak Demand (kVAR sd mx Q4) - [30660,6] as TIMESTAMPED_FLOAT32
// { 30670, 2} , // Name: Apparent Power Q1 Last Demand (kVA sd Q1) - [30670,2] as FLOAT32
// { 30672, 2} , // Name: Apparent Power Q1 Predicted Demand (kVA pr Q1) - [30672,2] as FLOAT32
// { 30674, 0} , // Name: Apparent Power Q1 Peak Demand (kVA sd mx Q1) - [30674,6] as TIMESTAMPED_FLOAT32
// { 30684, 2} , // Name: Apparent Power Q2 Last Demand (kVA sd Q2) - [30684,2] as FLOAT32
// { 30686, 2} , // Name: Apparent Power Q2 Predicted Demand (kVA pr Q2) - [30686,2] as FLOAT32
// { 30688, 0} , // Name: Apparent Power Q2 Peak Demand (kVA sd mx Q2) - [30688,6] as TIMESTAMPED_FLOAT32
// { 30698, 2} , // Name: Apparent Power Q3 Last Demand (kVA sd Q3) - [30698,2] as FLOAT32
// { 30700, 2} , // Name: Apparent Power Q3 Predicted Demand (kVA pr Q3) - [30700,2] as FLOAT32
// { 30702, 0} , // Name: Apparent Power Q3 Peak Demand (kVA sd mx Q3) - [30702,6] as TIMESTAMPED_FLOAT32
// { 30712, 2} , // Name: Apparent Power Q4 Last Demand (kVA sd Q4) - [30712,2] as FLOAT32
// { 30714, 2} , // Name: Apparent Power Q4 Predicted Demand (kVA pr Q4) - [30714,2] as FLOAT32
// { 30716, 0} , // Name: Apparent Power Q4 Peak Demand (kVA sd mx Q4) - [30716,6] as TIMESTAMPED_FLOAT32
// { 30822, 2} , // Name: Block Demand Active Power (kVA co kW d-r) - [30822,2] as FLOAT32
// { 30824, 2} , // Name: Block Demand Active Power Into the Load (kVA co kW del) - [30824,2] as FLOAT32
// { 30826, 2} , // Name: Block Demand Active Power Out of the Load (kVA co kW rec) - [30826,2] as FLOAT32
// { 30828, 2} , // Name: Block Demand Active Power Total (kVA co kW d+r) - [30828,2] as FLOAT32
// { 30830, 2} , // Name: Block Demand Reactive Power (kVA co kVAR d-r) - [30830,2] as FLOAT32
// { 30832, 2} , // Name: Block Demand Reactive Power Into the Load (kVA co kVAR del) - [30832,2] as FLOAT32
// { 30834, 2} , // Name: Block Demand Reactive Power Out of the Load (kVA co kVAR rec) - [30834,2] as FLOAT32
// { 30836, 2} , // Name: Block Demand Reactive Power Total (kVA co kVAR d+r) - [30836,2] as FLOAT32
// { 30838, 2} , // Name: Block Demand Active Power (kVAR co kW d-r) - [30838,2] as FLOAT32
// { 30840, 2} , // Name: Block Demand Active Power Into the Load (kVAR co kW del) - [30840,2] as FLOAT32
// { 30842, 2} , // Name: Block Demand Active Power Out of the Load (kVAR co kW rec) - [30842,2] as FLOAT32
// { 30844, 2} , // Name: Block Demand Active Power Total (kVAR co kW d+r) - [30844,2] as FLOAT32
// { 30846, 2} , // Name: Block Demand Apparent Power (kVAR co kVA d-r) - [30846,2] as FLOAT32
// { 30848, 2} , // Name: Block Demand Apparent Power Into the Load (kVAR co kVA del) - [30848,2] as FLOAT32
// { 30850, 2} , // Name: Block Demand Apparent Power Out of the Load (kVAR co kVA rec) - [30850,2] as FLOAT32
// { 30852, 2} , // Name: Block Demand Apparent Power Total (kVAR co kVA d+r) - [30852,2] as FLOAT32
// { 30854, 2} , // Name: Block Demand Reactive Power (kW co kVAR d-r) - [30854,2] as FLOAT32
// { 30856, 2} , // Name: Block Demand Reactive Power Into the Load (kW co kVAR del) - [30856,2] as FLOAT32
// { 30858, 2} , // Name: Block Demand Reactive Power Out of the Load (kW co kVAR rec) - [30858,2] as FLOAT32
// { 30860, 2} , // Name: Block Demand Reactive Power Total (kW co kVAR d+r) - [30860,2] as FLOAT32
// { 30862, 2} , // Name: Block Demand Apparent Power (kW co kVA d-r) - [30862,2] as FLOAT32
// { 30864, 2} , // Name: Block Demand Apparent Power Into the Load (kW co kVA del) - [30864,2] as FLOAT32
// { 30866, 2} , // Name: Block Demand Apparent Power Out of the Load (kW co kVA rec) - [30866,2] as FLOAT32
// { 30868, 2} , // Name: Block Demand Apparent Power Total (kW co kVA d+r) - [30868,2] as FLOAT32
// { 30870, 3} , // Name: Active Energy Delivered Rate 1 (PB kWh del A) - [30870,4] as INT64
// { 30874, 3} , // Name: Active Energy Delivered Rate 2 (PB kWh del B) - [30874,4] as INT64
// { 30878, 3} , // Name: Active Energy Delivered Rate 3 (PB kWh del C) - [30878,4] as INT64
// { 30882, 3} , // Name: Active Energy Delivered Rate 4 (PB kWh del D) - [30882,4] as INT64
// { 30886, 3} , // Name: Active Energy Delivered (PB kWh del) - [30886,4] as INT64
// { 30890, 3} , // Name: Active Energy Received (PB kWh rec) - [30890,4] as INT64
// { 30894, 3} , // Name: Reactive Energy Delivered (PB kVARh del) - [30894,4] as INT64
// { 30898, 3} , // Name: Reactive Energy Received (PB kVARh rec) - [30898,4] as INT64
// { 30902, 3} , // Name: Apparent Energy Delivered (PB kVAh del) - [30902,4] as INT64
// { 30906, 3} , // Name: Apparent Energy Received (PB kVAh rec) - [30906,4] as INT64
// { 30910, 2} , // Name: Peak Block Demand Active Power Delived Rate 1 (PB kW sd mx d A) - [30910,2] as FLOAT32
// { 30912, 2} , // Name: Peak Block Demand Active Power Delived Rate 2 (PB kW sd mx d B) - [30912,2] as FLOAT32
// { 30914, 2} , // Name: Peak Block Demand Active Power Delived Rate 3 (PB kW sd mx d C) - [30914,2] as FLOAT32
// { 30916, 2} , // Name: Peak Block Demand Active Power Delived Rate 4 (PB kW sd mx d D) - [30916,2] as FLOAT32
// { 30918, 2} , // Name: Peak Block Demand Active Power Received (PB kW sd mx rec) - [30918,2] as FLOAT32
// { 30920, 2} , // Name: Peak Block Demand Reactive Power Delivered (PB kVAR sd mx d) - [30920,2] as FLOAT32
// { 30922, 2} , // Name: Peak Block Demand Reactive Power Received (PB kVAR sd mx r) - [30922,2] as FLOAT32
// { 30924, 2} , // Name: Peak Block Demand Apparent Power Delivered (PB kVA sd mx d) - [30924,2] as FLOAT32
// { 30926, 2} , // Name: Peak Block Demand Apparent Power Received (PB kVA sd mx r) - [30926,2] as FLOAT32
// { 30928, 3} , // Name: Active Energy Delivered Rate 1 (PS kWh del A) - [30928,4] as INT64
// { 30932, 3} , // Name: Active Energy Delivered Rate 2 (PS kWh del B) - [30932,4] as INT64
// { 30936, 3} , // Name: Active Energy Delivered Rate 3 (PS kWh del C) - [30936,4] as INT64
// { 30940, 3} , // Name: Active Energy Delivered Rate 4 (PS kWh del D) - [30940,4] as INT64
// { 30944, 3} , // Name: Active Energy Delivered (PS kWh del) - [30944,4] as INT64
// { 30948, 3} , // Name: Active Energy Received (PS kWh rec) - [30948,4] as INT64
// { 30952, 3} , // Name: Reactive Energy Delivered (PS kVARh del) - [30952,4] as INT64
// { 30956, 3} , // Name: Reactive Energy Received (PS kVARh rec) - [30956,4] as INT64
// { 30960, 3} , // Name: Apparent Energy Delivered (PS kVAh del) - [30960,4] as INT64
// { 30964, 3} , // Name: Apparent Energy Received (PS kVAh rec) - [30964,4] as INT64
// { 30968, 2} , // Name: Peak Block Demand Active Power Delived Rate 1 (PS kW sd mx d A) - [30968,2] as FLOAT32
// { 30970, 2} , // Name: Peak Block Demand Active Power Delived Rate 2 (PS kW sd mx d B) - [30970,2] as FLOAT32
// { 30972, 2} , // Name: Peak Block Demand Active Power Delived Rate 3 (PS kW sd mx d C) - [30972,2] as FLOAT32
// { 30974, 2} , // Name: Peak Block Demand Active Power Delived Rate 4 (PS kW sd mx d D) - [30974,2] as FLOAT32
// { 30976, 2} , // Name: Peak Block Demand Active Power Received (PS kW sd mx rec) - [30976,2] as FLOAT32
// { 30978, 2} , // Name: Peak Block Demand Reactive Power Delivered (PS kVAR sd mx d) - [30978,2] as FLOAT32
// { 30980, 2} , // Name: Peak Block Demand Reactive Power Received (PS kVAR sd mx r) - [30980,2] as FLOAT32
// { 30982, 2} , // Name: Peak Block Demand Apparent Power Delivered (PS kVA sd mx d) - [30982,2] as FLOAT32
// { 30984, 2} , // Name: Peak Block Demand Apparent Power Received (PS kVA sd mx r) - [30984,2] as FLOAT32
// { 30986, 2} , // Name: Active Energy Delivered Rate 1 (PB kWh del A) - [30986,2] as FLOAT32
// { 30988, 2} , // Name: Active Energy Delivered Rate 2 (PB kWh del B) - [30988,2] as FLOAT32
// { 30990, 2} , // Name: Active Energy Delivered Rate 3 (PB kWh del C) - [30990,2] as FLOAT32
// { 30992, 2} , // Name: Active Energy Delivered Rate 4 (PB kWh del D) - [30992,2] as FLOAT32
// { 30994, 2} , // Name: Active Energy Delivered (PB kWh del) - [30994,2] as FLOAT32
// { 30996, 2} , // Name: Active Energy Received (PB kWh rec) - [30996,2] as FLOAT32
// { 30998, 2} , // Name: Reactive Energy Delivered (PB kVARh del) - [30998,2] as FLOAT32
// { 31000, 2} , // Name: Reactive Energy Received (PB kVARh rec) - [31000,2] as FLOAT32
// { 31002, 2} , // Name: Apparent Energy Delivered (PB kVAh del) - [31002,2] as FLOAT32
// { 31004, 2} , // Name: Apparent Energy Received (PB kVAh rec) - [31004,2] as FLOAT32
// { 31006, 2} , // Name: Active Energy Delivered Rate 1 (PS kWh del A) - [31006,2] as FLOAT32
// { 31008, 2} , // Name: Active Energy Delivered Rate 2 (PS kWh del B) - [31008,2] as FLOAT32
// { 31010, 2} , // Name: Active Energy Delivered Rate 3 (PS kWh del C) - [31010,2] as FLOAT32
// { 31012, 2} , // Name: Active Energy Delivered Rate 4 (PS kWh del D) - [31012,2] as FLOAT32
// { 31014, 2} , // Name: Active Energy Delivered (PS kWh del) - [31014,2] as FLOAT32
// { 31016, 2} , // Name: Active Energy Received (PS kWh rec) - [31016,2] as FLOAT32
// { 31018, 2} , // Name: Reactive Energy Delivered (PS kVARh del) - [31018,2] as FLOAT32
// { 31020, 2} , // Name: Reactive Energy Received (PS kVARh rec) - [31020,2] as FLOAT32
// { 31022, 2} , // Name: Apparent Energy Delivered (PS kVAh del) - [31022,2] as FLOAT32
// { 31024, 2} , // Name: Apparent Energy Received (PS kVAh rec) - [31024,2] as FLOAT32
// { 34352, 2} , // Name: Current, Phase A 3 Second (150/180 Cycles) (I1 3s) - [34352,2] as FLOAT32
// { 34354, 2} , // Name: Current, Phase A 10 Minute (I1 10m) - [34354,2] as FLOAT32
// { 34358, 2} , // Name: Current, Phase B 3 Second (150/180 Cycles) (I2 3s) - [34358,2] as FLOAT32
// { 34360, 2} , // Name: Current, Phase B 10 Minute (I2 10m) - [34360,2] as FLOAT32
// { 34364, 2} , // Name: Current, Phase C 3 Second (150/180 Cycles) (I3 3s) - [34364,2] as FLOAT32
// { 34366, 2} , // Name: Current, Phase C 10 Minute (I3 10m) - [34366,2] as FLOAT32
// { 34400, 2} , // Name: Voltage, A-N 3 Second (150/180 Cycles) (V1 3s) - [34400,2] as FLOAT32
// { 34402, 2} , // Name: Voltage, A-N 10 Minute (V1 10m) - [34402,2] as FLOAT32
// { 34404, 2} , // Name: Voltage, A-N 2 Hour (V1 2hr) - [34404,2] as FLOAT32
// { 34406, 2} , // Name: Voltage, B-N 3 Second (150/180 Cycles) (V2 3s) - [34406,2] as FLOAT32
// { 34408, 2} , // Name: Voltage, B-N 10 Minute (V2 10m) - [34408,2] as FLOAT32
// { 34410, 2} , // Name: Voltage, B-N 2 Hour (V2 2hr) - [34410,2] as FLOAT32
// { 34412, 2} , // Name: Voltage, C-N 3 Second (150/180 Cycles) (V3 3s) - [34412,2] as FLOAT32
// { 34414, 2} , // Name: Voltage, C-N 10 Minute (V3 10m) - [34414,2] as FLOAT32
// { 34416, 2} , // Name: Voltage, C-N 2 Hour (V3 2hr) - [34416,2] as FLOAT32
// { 34472, 2} , // Name: Power Frequency 3 Second (150/180 Cycles) (Power Frequency) - [34472,2] as FLOAT32
// { 34474, 2} , // Name: Power Frequency 10 Minute (Power Freq 10m) - [34474,2] as FLOAT32
// { 34476, 2} , // Name: Power Frequency 2 Hour (Power Freq 2hr) - [34476,2] as FLOAT32
// { 40000, 2} , // Name: Frequency 10m Mean (PQ Freq mean) - [40000,2] as FLOAT32
// { 40002, 2} , // Name: Frequency 10m Low (PQ Freq low) - [40002,2] as FLOAT32
// { 40004, 2} , // Name: Frequency 10m High (PQ Freq high) - [40004,2] as FLOAT32
// { 40006, 2} , // Name: Frequency Minimum (PQ Freq mn-op) - [40006,2] as FLOAT32
// { 40008, 2} , // Name: Frequency Maximum (PQ Freq mx-op) - [40008,2] as FLOAT32
// { 40010, 2} , // Name: V1 10m Mean (PQ V1 mean) - [40010,2] as FLOAT32
// { 40012, 2} , // Name: V1 10m Low (PQ V1 low) - [40012,2] as FLOAT32
// { 40014, 2} , // Name: V1 10m High (PQ V1 high) - [40014,2] as FLOAT32
// { 40016, 2} , // Name: V2 10m Mean (PQ V2 mean) - [40016,2] as FLOAT32
// { 40018, 2} , // Name: V2 10m Low (PQ V2 low) - [40018,2] as FLOAT32
// { 40020, 2} , // Name: V2 10m High (PQ V2 high) - [40020,2] as FLOAT32
// { 40022, 2} , // Name: V3 10m Mean (PQ V3 mean) - [40022,2] as FLOAT32
// { 40024, 2} , // Name: V3 10m Low (PQ V3 low) - [40024,2] as FLOAT32
// { 40026, 2} , // Name: V3 10m High (PQ V3 high) - [40026,2] as FLOAT32
// { 54396, 1} , // Name: FAC1 Nominal Frequency (N/A) - [54396,1] as INT16U
// { 56977, 0} , // Name: COM1 RTS Delay (N/A) - [56977,2] as INT32
}
;

View File

@ -0,0 +1,27 @@
#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
uint32_t getRegisterUInt32(uint16_t highWord, uint16_t lowWord) {
uint32_t val = (highWord << 16) + lowWord;
return val;
}
int32_t getRegisterInt32(uint16_t highWord, uint16_t lowWord) {
int32_t val = (highWord << 16) + lowWord;
return val;
}
int64_t getRegisterInt64(uint16_t word1, uint16_t word2, uint16_t word3, uint16_t word4) {
uint64_t val = ((uint64_t)word1 << 48) + ((uint64_t)word2 << 32) + (word3 << 16) + word4;
return val;
}
float getRegisterFloat(uint16_t highWord, uint16_t lowWord) {
uint32_t floatRaw = ((uint32_t)highWord << 16) | lowWord;
float floatValue;
memcpy(&floatValue, &floatRaw, sizeof(float));
return floatValue;
}

View File

@ -1 +0,0 @@
# Modbus SD Card Firmware

View File

@ -1 +0,0 @@
# Modbus Sim Card Firmware

View File

@ -0,0 +1,313 @@
#include <NeoSWSerial.h>
#include <ModbusMaster.h>
#include <SoftwareSerial.h>
#include "util.h"
#include "register_map_pm8000.h"
// RS485 pins
#define DE_RE_PIN 4
#define RX_PIN 8 // SoftwareSerial RX pin for Modbus
#define TX_PIN 7 // SoftwareSerial TX pin for Modbus
#define SLAVE_ID 101
#define SERIAL_BAUDRATE 9600
#define LED_A_PID 3
#define LED_B_PID 5
// GSM module pins
#define GSM_RX 2
#define GSM_TX 3
NeoSWSerial modbusSerial(RX_PIN, TX_PIN); // Create a software serial instance for Modbus
ModbusMaster node;
SoftwareSerial gsmSerial(GSM_RX, GSM_TX); // Create a software serial instance for GSM
unsigned long lastRefreshTime = 0;
bool headerSent = false;
bool booted = false;
void flicker(uint8_t pin, uint8_t times, uint16_t speed)
{
for (int i = 0; i < times; i++)
{
delay(speed);
digitalWrite(pin, HIGH);
delay(speed);
digitalWrite(pin, LOW);
}
}
void setup()
{
booted = false;
pinMode(LED_A_PID, OUTPUT);
pinMode(LED_B_PID, OUTPUT);
digitalWrite(LED_A_PID, LOW);
digitalWrite(LED_B_PID, HIGH);
Serial.begin(SERIAL_BAUDRATE); // For debugging
Serial.println(F("Startup \n"));
Serial.println(F("Initialize RS485 module / Modbus \n"));
pinMode(DE_RE_PIN, OUTPUT);
digitalWrite(DE_RE_PIN, LOW); // Set to LOW for receiving mode initially
modbusSerial.begin(SERIAL_BAUDRATE);
node.begin(SLAVE_ID, modbusSerial);
node.preTransmission(preTransmission);
node.postTransmission(postTransmission);
// Initialize GSM module
gsmSerial.begin(9600);
delay(3000); // Give time for GSM module to initialize
if (initGSM()) {
Serial.println(F("GSM module initialized successfully"));
flicker(LED_A_PID, 5, 200); // 5 quick flashes to indicate successful GSM initialization
} else {
Serial.println(F("Failed to initialize GSM module"));
flicker(LED_B_PID, 2, 1000); // 2 slow flashes to indicate GSM initialization failure
return;
}
flicker(LED_A_PID, 10, 100);
digitalWrite(LED_B_PID, LOW);
booted = true;
}
void preTransmission()
{
digitalWrite(DE_RE_PIN, HIGH); // Enable RS485 transmit
digitalWrite(LED_A_PID, HIGH);
}
void postTransmission()
{
digitalWrite(DE_RE_PIN, LOW); // Disable RS485 transmit
digitalWrite(LED_A_PID, LOW);
}
bool initGSM() {
gsmSerial.println("AT");
delay(1000);
if (gsmSerial.find("OK")) {
gsmSerial.println("AT+CPIN?");
delay(1000);
if (gsmSerial.find("READY")) {
return true;
}
}
return false;
}
bool waitForResponse(const char* expectedResponse, unsigned long timeout) {
unsigned long start = millis();
String response = "";
while (millis() - start < timeout) {
if (gsmSerial.available()) {
char c = gsmSerial.read();
response += c;
if (response.indexOf(expectedResponse) != -1) {
return true;
}
}
}
Serial.println("Timeout waiting for response: " + response);
return false;
}
int16_t waitForHTTPAction(unsigned long timeout) {
unsigned long start = millis();
String response = "";
while (millis() - start < timeout) {
if (gsmSerial.available()) {
char c = gsmSerial.read();
response += c;
if (response.indexOf("+HTTPACTION:") != -1) {
// Parse the response
int status = response.substring(response.indexOf(',') + 1).toInt();
return status;
}
}
}
Serial.println("Timeout waiting for HTTP action: " + response);
return -1;
}
bool sendGSMData(String data) {
// Configure bearer profile
gsmSerial.println("AT+SAPBR=3,1,\"Contype\",\"GPRS\"");
if (!waitForResponse("OK", 1000)) return false;
gsmSerial.println("AT+SAPBR=3,1,\"APN\",\"afrihost\""); // Replace with your APN
if (!waitForResponse("OK", 1000)) return false;
gsmSerial.println("AT+SAPBR=1,1");
if (!waitForResponse("OK", 10000)) return false; // Bearer activation can take longer
// Initialize HTTP service
gsmSerial.println("AT+HTTPINIT");
if (!waitForResponse("OK", 1000)) return false;
gsmSerial.println("AT+HTTPPARA=\"CID\",1");
if (!waitForResponse("OK", 1000)) return false;
// Set the URL (replace with your server URL)
gsmSerial.println("AT+HTTPPARA=\"URL\",\"http://hardwareapi.warky.dev/upload/pm8000\"");
if (!waitForResponse("OK", 1000)) return false;
// Set HTTP data
gsmSerial.println("AT+HTTPPARA=\"CONTENT\",\"application/x-www-form-urlencoded\"");
if (!waitForResponse("OK", 1000)) return false;
gsmSerial.println("AT+HTTPDATA=" + String(data.length()) + ",5000");
if (!waitForResponse("DOWNLOAD", 1000)) return false;
gsmSerial.println(data);
if (!waitForResponse("OK", 5000)) return false;
// Send HTTP POST request
gsmSerial.println("AT+HTTPACTION=1");
int16_t httpStatus = waitForHTTPAction(10000);
if (httpStatus != 200) {
Serial.println("HTTP POST failed with status: " + String(httpStatus));
return false;
}
// Read the response
gsmSerial.println("AT+HTTPREAD");
if (!waitForResponse("OK", 1000)) return false;
// Close HTTP service
gsmSerial.println("AT+HTTPTERM");
if (!waitForResponse("OK", 1000)) return false;
// Close bearer
gsmSerial.println("AT+SAPBR=0,1");
if (!waitForResponse("OK", 1000)) return false;
digitalWrite(LED_A_PID, HIGH); // Indicate successful data send
delay(200);
digitalWrite(LED_A_PID, LOW);
return true;
}
void loop()
{
if (!booted)
{
Serial.print(F("\nBoot failed, cycle "));
delay(10000);
digitalWrite(LED_A_PID, LOW);
return;
}
delay(100);
String data;
if (millis() - lastRefreshTime >= 60000) // Changed to 1 minute interval
{
lastRefreshTime = millis();
Serial.print(F("\nTime: "));
Serial.print(millis());
const uint16_t totalReg = sizeof(registers) / sizeof(registers[0]);
if (!headerSent)
{
data = "Date Time,";
for (int i = 0; i < totalReg; i++)
{
const uint16_t regaddr = pgm_read_word(&registers[i].regaddr);
data += "@";
data += String(regaddr);
data += ",";
}
headerSent = true;
if (sendGSMData(data)) {
flicker(LED_A_PID, 50, 10); // 50 quick flickers, sent header
} else {
flicker(LED_B_PID, 5, 200); // 5 medium flashes, failed to send header
}
}
data = String(millis()) + ","; // Use millis() as timestamp
Serial.println(totalReg);
// Modbus Data Loop
for (int i = 0; i < totalReg; i++)
{
const uint16_t regaddr = pgm_read_word(&registers[i].regaddr);
const uint8_t regtype = pgm_read_word(&registers[i].regtype);
Serial.print(F("Reg Read: "));
Serial.println(regtype);
Serial.println(regaddr);
if (regaddr > 0)
{
delay(25); // Gives the pending communication a little delay
uint8_t result = node.readHoldingRegisters(regaddr - 1, 2);
delay(25); // Delay the read for a little bit so that the buffer can be read
if (result == node.ku8MBSuccess)
{
if (regtype == 2)
{
data += String(getRegisterFloat(node.getResponseBuffer(0), node.getResponseBuffer(1)));
}
else if (regtype == 1)
{
data += String(node.getResponseBuffer(0));
}
else if (regtype == 0)
{
data += String(getRegisterInt32(node.getResponseBuffer(0), node.getResponseBuffer(1)));
}
else if (regtype == 5)
{
String strData = "";
for (uint8_t j = 0; j < 20; j++)
{
uint8_t v = node.getResponseBuffer(j);
if (v == 0) {
break;
}
strData += char(v);
}
data += strData;
}
else
{
data += "null";
}
}
else
{
Serial.print(F("Reg Error: "));
Serial.print(result, HEX);
Serial.print("\n");
data += "E";
data += String(result, HEX);
flicker(LED_B_PID, 2, 250);
}
data += ",";
}
}
Serial.print(F("\nData to send: "));
Serial.println(data);
if (sendGSMData(data)) {
Serial.println(F("Data sent successfully via GSM"));
flicker(LED_A_PID, 4, 100); // 4 quick flickers on LED_A_PID, data sent
} else {
Serial.println(F("Failed to send data via GSM"));
flicker(LED_B_PID, 4, 250); // 4 medium flashes on LED_B_PID, failed to send data
}
Serial.print(F("\n\n"));
}
}

View File

@ -0,0 +1,201 @@
# Modbus Reading and GSM Data Logging for Schneider PowerLogic PM8000
This is a specification and implementation of an Arduino-based Modbus data logger with GSM data transmission for the Schneider PowerLogic PM8000.
This software is designed for Vivarox EMS and only Vivarox has the right to use and modify this software.
## Arduino Implementation:
This project uses an Arduino to connect to Modbus devices, read information, and transmit it via GSM to a remote server.
### Hardware needed:
1. Arduino Board
Recommended: Arduino MEGA 2560 (for more memory and I/O pins) or Arduino UNO (for simpler projects).
2. RS485 to TTL Module
Allows communication between the Arduino and Modbus devices using the RS485 protocol.
3. 800C GSM Module 3.3/5V
Enables the Arduino to send data over cellular networks.
4. Power Supply
To power the Arduino and connected peripherals. A dedicated 2A power supply is required for the GSM module.
5. LED Indicators
Two LEDs for status indication.
6. Capacitors
100uF and 10uF capacitors for power supply stabilization.
### Wiring
#### Wiring Diagram
```
Arduino Mega/Uno 800C GSM Module Description
----------------- --------------- -----------
5V ----> VCC Power supply
GND ----> GND Ground
2 (RX) <---- TX GSM TX to Arduino RX
3 (TX) ----> RX Arduino TX to GSM RX
7 ----> DI (RS485) RS485 Driver Input
8 <---- RO (RS485) RS485 Receiver Output
4 ----> DE/RE (RS485) RS485 Driver Enable/Receiver Enable
3 ----> LED A Status LED A
5 ----> LED B Status LED B
Power Supply
------------
VCC ----> + (2A) Dedicated 2A power supply positive
GND ----> - (GND) Dedicated 2A power supply ground
Capacitors
----------
VCC ----|(---- GND 100uF capacitor
VCC ---||---- GND 10uF capacitor
Antenna
|
|
[GSM Module 800C]
```
#### Wiring Notes:
1. Ensure the power supply can provide 2A current.
2. Place the 100uF and 10uF capacitors as close to the GSM module's power pins as possible.
3. The RS485 connections are optional and depend on your specific requirements.
4. LEDs should be connected with appropriate current-limiting resistors (not shown in diagram).
5. The GSM module's antenna should be connected securely.
6. Double-check all connections before powering on the system.
### Software
- Modbus Library: ModbusMaster
- GSM Library: Built-in SoftwareSerial
- NeoSWSerial: For better latency on software serial communication with Modbus
### Implementation Details
1. Modbus Configuration:
- Slave ID: 101
- Baud Rate: 9600
- Register map: Defined in separate "register_map_pm8000.h" file
2. Data Logging and Transmission:
- Frequency: Readings taken and transmitted every minute
- Data Format: CSV (Comma-Separated Values) string
- Data Structure: Timestamp (millis), followed by register values
- Header Row: Includes register addresses for easy identification
3. Register Types Supported:
- Float (32-bit)
- Integer (32-bit)
- String (up to 20 characters)
4. Error Handling and Status Indication:
- LED A: Indicates successful data transmission
- LED B: Indicates errors (e.g., GSM issues, Modbus communication errors)
- Serial output for debugging (9600 baud)
5. Special Features:
- Robust error handling for GSM and Modbus communication
- Header sent once at the beginning of each session
- Configurable APN and server URL
### Programming Workflow
1. Initialize hardware (GSM module, RS485 module)
2. Set up Modbus communication parameters
3. Enter main loop:
- Read data from Modbus registers
- Format data into CSV string
- Send data via GSM to server
- Handle any errors and provide status indication via LEDs
- Delay for 1 minute before next reading and transmission
## Memory Limitations and Register Customization
### Memory Constraints
The Arduino, particularly models like the UNO and MEGA, has limited memory available for storing program code and variables. This limitation affects the number of Modbus registers that can be defined and read in a single project.
- Arduino UNO: 32 KB Flash (program storage), 2 KB SRAM
- Arduino MEGA: 256 KB Flash, 8 KB SRAM
Due to these constraints, the number of registers that can be defined in the `register_map_pm8000.h` file is not unlimited. The exact number will depend on the complexity of your code and other libraries used.
### Customizing the Register Map
To adapt this project to your specific needs, you can modify the `register_map_pm8000.h` file. This file contains the definitions of Modbus registers to be read by the Arduino.
To customize the register map:
1. Open the `register_map_pm8000.h` file in your Arduino IDE or text editor.
2. Locate the `registers` array in the file. It should look something like this:
```cpp
const RegisterInfo registers[] PROGMEM = {
{40001, 2}, // Example register
{40003, 1},
// ... other registers ...
};
```
3. To remove a register, simply comment out its line by adding `//` at the beginning:
```cpp
const RegisterInfo registers[] PROGMEM = {
{40001, 2}, // Example register
// {40003, 1}, // This register is now commented out and won't be read
// ... other registers ...
};
```
4. To add a new register, add a new line to the array with the register address and type:
```cpp
const RegisterInfo registers[] PROGMEM = {
{40001, 2}, // Example register
{40003, 1},
{40005, 2}, // New register added
// ... other registers ...
};
```
5. Remember to keep the array syntax correct, with commas between entries and a semicolon at the end of the array.
## Best Practices
- Start by commenting out registers you don't need before adding new ones.
- If you're using an Arduino UNO, you may need to be more selective about which registers to include due to memory constraints.
- Test your modifications incrementally to ensure the Arduino can handle the memory load.
- If you need to read a large number of registers, consider using an Arduino MEGA or a more powerful microcontroller.
- Ensure your GSM data plan can handle the amount of data being transmitted.
- Regularly check your server to ensure data is being received correctly.
## Important AT Commands
Here are some important AT commands used in this project:
1. `AT+XISP=0`: Set to use internal TCP/IP protocol stack.
2. `AT+CGDCONT=1,"IP","APN_NAME"`: Set the APN for your cellular provider.
3. `AT+XGAUTH=1,1,"username","password"`: Set authentication for private networks if needed.
4. `AT+XIIC=1`: Establish PPP link.
5. `AT+TCPSETUP=0,server_ip,port`: Establish TCP connection.
6. `AT+TCPSEND=0,data_length`: Send data over TCP connection.
7. `AT+TCPCLOSE=0`: Close TCP connection.
8. `AT+ENPWRSAVE=1`: Enable power-saving mode (if needed).
Remember to replace "APN_NAME", "username", "password", "server_ip", and "port" with your specific values.
## Troubleshooting
1. If you encounter communication issues, double-check your wiring and ensure all connections are secure.
2. Verify that your APN settings are correct for your cellular provider.
3. If the module isn't responding, try resetting it and check your power supply.
4. Use AT commands like `AT+CSQ` to check signal strength and `AT+CREG?` to check network registration status.
5. If data isn't being sent, verify your TCP connection settings and ensure you have an active data plan.
By carefully managing the registers in the `register_map_pm8000.h` file and configuring your GSM settings, you can customize this Modbus reader to suit your specific requirements while staying within the memory limitations of your Arduino board and optimizing data transmission.

View File

@ -0,0 +1,602 @@
#include <stdint.h>
struct RegisterMap
{
uint16_t regaddr;
uint8_t regtype;
};
const PROGMEM RegisterMap registers[] = {
//{ 30, 5} , // Name: Meter Name (DeviceName) - [30,20] as UTF8
//{ 50, 5} , // Name: Meter Model (DeviceType) - [50,20] as UTF8
{ 1837, 1} , // Name: Year (Year) - [1837,1] as INT16U
{ 1838, 1} , // Name: Month (Month) - [1838,1] as INT16U
{ 1839, 1} , // Name: Day (Day) - [1839,1] as INT16U
{ 1840, 1} , // Name: Hour (Hour) - [1840,1] as INT16U
{ 1841, 1} , // Name: Minute (Minute) - [1841,1] as INT16U
{ 2700, 2} , // Name: Active Energy Delivered (Into Load) (kWh del) - [2700,2] as FLOAT32
{ 2702, 2} , // Name: Active Energy Received (Out of Load) (kWh rec) - [2702,2] as FLOAT32
{ 2704, 2} , // Name: Active Energy Delivered + Received (kWh del+rec) - [2704,2] as FLOAT32
{ 2706, 2} , // Name: Active Energy Delivered- Received (kWh del-rec) - [2706,2] as FLOAT32
{ 2708, 2} , // Name: Reactive Energy Delivered (kVARh del) - [2708,2] as FLOAT32
{ 2710, 2} , // Name: Reactive Energy Received (kVARh rec) - [2710,2] as FLOAT32
{ 2712, 2} , // Name: Reactive Energy Delivered + Received (kVARh del+rec) - [2712,2] as FLOAT32
{ 2714, 2} , // Name: Reactive Energy Delivered - Received (kVARh del-rec) - [2714,2] as FLOAT32
{ 2716, 2} , // Name: Apparent Energy Delivered (kVAh del) - [2716,2] as FLOAT32
{ 2718, 2} , // Name: Apparent Energy Received (kVAh rec) - [2718,2] as FLOAT32
{ 2720, 2} , // Name: Apparent Energy Delivered + Received (kVAh del+rec) - [2720,2] as FLOAT32
{ 2722, 2} , // Name: Apparent Energy Delivered - Received (kVAh del-rec) - [2722,2] as FLOAT32
{ 2724, 2} , // Name: Active Energy in Quadrant I (kWh Q1) - [2724,2] as FLOAT32
{ 2726, 2} , // Name: Active Energy in Quadrant II (kWh Q2) - [2726,2] as FLOAT32
{ 2728, 2} , // Name: Active Energy in Quadrant III (kWh Q3) - [2728,2] as FLOAT32
{ 2730, 2} , // Name: Active Energy in Quadrant IV (kWh Q4) - [2730,2] as FLOAT32
{ 2732, 2} , // Name: Reactive Energy in Quadrant I (kVARh Q1) - [2732,2] as FLOAT32
{ 2734, 2} , // Name: Reactive Energy in Quadrant II (kVARh Q2) - [2734,2] as FLOAT32
{ 2736, 2} , // Name: Reactive Energy in Quadrant III (kVARh Q3) - [2736,2] as FLOAT32
{ 2738, 2} , // Name: Reactive Energy in Quadrant IV (kVARh Q4) - [2738,2] as FLOAT32
{ 2740, 2} , // Name: Apparent Energy in Quadrant I (kVAh Q1) - [2740,2] as FLOAT32
{ 2742, 2} , // Name: Apparent Energy in Quadrant II (kVAh Q2) - [2742,2] as FLOAT32
{ 2744, 2} , // Name: Apparent Energy in Quadrant III (kVAh Q3) - [2744,2] as FLOAT32
{ 2746, 2} , // Name: Apparent Energy in Quadrant IV (kVAh Q4) - [2746,2] as FLOAT32
{ 2748, 2} , // Name: Conditional Active Energy Delivered (Into Load) (Cnd kWh del) - [2748,2] as FLOAT32
{ 2750, 2} , // Name: Conditional Active Energy Received (Out of Load) (Cnd kWh rec) - [2750,2] as FLOAT32
{ 2754, 2} , // Name: Active Energy Delivered - Received, Conditional (Cnd kWh d-r) - [2754,2] as FLOAT32
{ 2756, 2} , // Name: Conditional Reactive Energy In (Delivered) (Cnd kVARh del) - [2756,2] as FLOAT32
{ 2758, 2} , // Name: Conditional Reactive Energy Out (Received) (Cnd kVARh rec) - [2758,2] as FLOAT32
{ 2762, 2} , // Name: Reactive Energy Delivered - Received, Conditional (Cnd kVARh d-r) - [2762,2] as FLOAT32
{ 2768, 2} , // Name: Apparent Energy Delivered + Received, Conditional (Cnd kVAh d+r) - [2768,2] as FLOAT32
{ 2772, 2} , // Name: Active Energy Delivered , Last Complete Interval (Inc kWh del C) - [2772,2] as FLOAT32
{ 2774, 2} , // Name: Active Energy Received , Last Complete Interval (Inc kWh rec C) - [2774,2] as FLOAT32
{ 2776, 2} , // Name: Active Energy Delivered - Received , Last Complete Interval (Inc kWh d-r C) - [2776,2] as FLOAT32
{ 2778, 2} , // Name: Reactive Energy Delivered , Last Complete Interval (Inc kVARh del C) - [2778,2] as FLOAT32
{ 2780, 2} , // Name: Reactive Energy Received , Last Complete Interval (Inc kVARh rec C) - [2780,2] as FLOAT32
{ 2782, 2} , // Name: Reactive Energy Delivered - Received , Last Complete Interval (Inc kVARh d-r C) - [2782,2] as FLOAT32
{ 2784, 2} , // Name: Apparent Energy Delivered + Received , Last Complete Interval (Inc kVAh d+r C) - [2784,2] as FLOAT32
{ 2786, 2} , // Name: Active Energy Delivered , Present Interval (Inc kWh del) - [2786,2] as FLOAT32
{ 2788, 2} , // Name: Active Energy Received , Present Interval (Inc kWh rec) - [2788,2] as FLOAT32
{ 2790, 2} , // Name: Active Energy Delivered - Received , Present Interval (Inc kWh d-r) - [2790,2] as FLOAT32
{ 2792, 2} , // Name: Reactive Energy Delivered , Present Interval (Inc kVARh del) - [2792,2] as FLOAT32
{ 2794, 2} , // Name: Reactive Energy Received , Present Interval (Inc kVARh rec) - [2794,2] as FLOAT32
{ 2796, 2} , // Name: Reactive Energy Delivered - Received , Present Interval (Inc kVARh d-r) - [2796,2] as FLOAT32
{ 2798, 2} , // Name: Apparent Energy Delivered + Received , Present Interval (Inc kVAh d+r) - [2798,2] as FLOAT32
{ 2800, 2} , // Name: Active Energy Delivered Interval (kWh del int) - [2800,2] as FLOAT32
{ 2802, 2} , // Name: Active Energy Received Interval (kWh rec int) - [2802,2] as FLOAT32
{ 2804, 2} , // Name: Reactive Energy Delivered Interval (kVARh del int) - [2804,2] as FLOAT32
{ 2806, 2} , // Name: Reactive Energy Received Interval (kVARh rec int) - [2806,2] as FLOAT32
{ 2808, 2} , // Name: Apparent Energy Delivered Interval (kVAh del int) - [2808,2] as FLOAT32
{ 2810, 2} , // Name: Apparent Energy Received Interval (kVAh rec int) - [2810,2] as FLOAT32
{ 3000, 2} , // Name: Current A (I a) - [3000,2] as FLOAT32
{ 3002, 2} , // Name: Current B (I b) - [3002,2] as FLOAT32
{ 3004, 2} , // Name: Current C (I c) - [3004,2] as FLOAT32
{ 3006, 2} , // Name: Current N (I 4) - [3006,2] as FLOAT32
{ 3008, 2} , // Name: Current G (I 5) - [3008,2] as FLOAT32
//{ 3010, 2} , // Name: Current Avg (I avg) - [3010,2] as FLOAT32
{ 3020, 2} , // Name: Voltage A-B (Vll ab) - [3020,2] as FLOAT32
{ 3022, 2} , // Name: Voltage B-C (Vll bc) - [3022,2] as FLOAT32
{ 3024, 2} , // Name: Voltage C-A (Vll ca) - [3024,2] as FLOAT32
//{ 3026, 2} , // Name: Voltage L-L Avg (Vll avg) - [3026,2] as FLOAT32
{ 3028, 2} , // Name: Voltage A-N (Vln a) - [3028,2] as FLOAT32
{ 3030, 2} , // Name: Voltage B-N (Vln b) - [3030,2] as FLOAT32
{ 3032, 2} , // Name: Voltage C-N (Vln c) - [3032,2] as FLOAT32
// { 3036, 2} , // Name: Voltage L-N Avg (Vln avg) - [3036,2] as FLOAT32
{ 3054, 2} , // Name: Active Power A (kW a) - [3054,2] as FLOAT32
{ 3056, 2} , // Name: Active Power B (kW b) - [3056,2] as FLOAT32
{ 3058, 2} , // Name: Active Power C (kW c) - [3058,2] as FLOAT32
{ 3060, 2} , // Name: Active Power Total (kW tot) - [3060,2] as FLOAT32
{ 3062, 2} , // Name: Reactive Power A (kVAR a) - [3062,2] as FLOAT32
{ 3064, 2} , // Name: Reactive Power B (kVAR b) - [3064,2] as FLOAT32
{ 3066, 2} , // Name: Reactive Power C (kVAR c) - [3066,2] as FLOAT32
{ 3068, 2} , // Name: Reactive Power Total (kVAR tot) - [3068,2] as FLOAT32
{ 3070, 2} , // Name: Apparent Power A (kVA a) - [3070,2] as FLOAT32
{ 3072, 2} , // Name: Apparent Power B (kVA b) - [3072,2] as FLOAT32
{ 3074, 2} , // Name: Apparent Power C (kVA c) - [3074,2] as FLOAT32
{ 3076, 2} , // Name: Apparent Power Total (kVA tot) - [3076,2] as FLOAT32
{ 3110, 2} , // Name: Frequency (Freq) - [3110,2] as FLOAT32
// { 3204, 3} , // Name: Active Energy Delivered (Into Load) (kWh del) - [3204,4] as INT64
// { 3208, 3} , // Name: Active Energy Received (Out of Load) (kWh rec) - [3208,4] as INT64
// { 3212, 3} , // Name: Active Energy Delivered + Received (kWh del+rec) - [3212,4] as INT64
// { 3216, 3} , // Name: Active Energy Delivered- Received (kWh del-rec) - [3216,4] as INT64
// { 3220, 3} , // Name: Reactive Energy Delivered (kVARh del) - [3220,4] as INT64
// { 3224, 3} , // Name: Reactive Energy Received (kVARh rec) - [3224,4] as INT64
// { 3228, 3} , // Name: Reactive Energy Delivered + Received (kVARh del+rec) - [3228,4] as INT64
// { 3232, 3} , // Name: Reactive Energy Delivered - Received (kVARh del-rec) - [3232,4] as INT64
// { 3236, 3} , // Name: Apparent Energy Delivered (kVAh del) - [3236,4] as INT64
// { 3240, 3} , // Name: Apparent Energy Received (kVAh rec) - [3240,4] as INT64
// { 3244, 3} , // Name: Apparent Energy Delivered + Received (kVAh del+rec) - [3244,4] as INT64
// { 3248, 3} , // Name: Apparent Energy Delivered - Received (kVAh del-rec) - [3248,4] as INT64
// { 3256, 3} , // Name: Active Energy in Quadrant I (kWh Q1) - [3256,4] as INT64
// { 3260, 3} , // Name: Active Energy in Quadrant II (kWh Q2) - [3260,4] as INT64
// { 3264, 3} , // Name: Active Energy in Quadrant III (kWh Q3) - [3264,4] as INT64
// { 3268, 3} , // Name: Active Energy in Quadrant IV (kWh Q4) - [3268,4] as INT64
// { 3272, 3} , // Name: Reactive Energy in Quadrant I (kVARh Q1) - [3272,4] as INT64
// { 3276, 3} , // Name: Reactive Energy in Quadrant II (kVARh Q2) - [3276,4] as INT64
// { 3280, 3} , // Name: Reactive Energy in Quadrant III (kVARh Q3) - [3280,4] as INT64
// { 3284, 3} , // Name: Reactive Energy in Quadrant IV (kVARh Q4) - [3284,4] as INT64
// { 3288, 3} , // Name: Apparent Energy in Quadrant I (kVAh Q1) - [3288,4] as INT64
// { 3292, 3} , // Name: Apparent Energy in Quadrant II (kVAh Q2) - [3292,4] as INT64
// { 3296, 3} , // Name: Apparent Energy in Quadrant III (kVAh Q3) - [3296,4] as INT64
// { 3300, 3} , // Name: Apparent Energy in Quadrant IV (kVAh Q4) - [3300,4] as INT64
// { 3358, 3} , // Name: Conditional Active Energy Delivered (Into Load) (Cnd kWh del) - [3358,4] as INT64
// { 3362, 3} , // Name: Conditional Active Energy Received (Out of Load) (Cnd kWh rec) - [3362,4] as INT64
// { 3370, 3} , // Name: Active Energy Delivered - Received, Conditional (Cnd kWh d-r) - [3370,4] as INT64
// { 3374, 3} , // Name: Conditional Reactive Energy In (Delivered) (Cnd kVARh del) - [3374,4] as INT64
// { 3378, 3} , // Name: Conditional Reactive Energy Out (Received) (Cnd kVARh rec) - [3378,4] as INT64
// { 3386, 3} , // Name: Reactive Energy Delivered - Received, Conditional (Cnd kVARh d-r) - [3386,4] as INT64
// { 3398, 3} , // Name: Apparent Energy Delivered + Received, Conditional (Cnd kVAh d+r) - [3398,4] as INT64
// { 3414, 3} , // Name: Active Energy Delivered , Last Complete Interval (Inc kWh del C) - [3414,4] as INT64
// { 3418, 3} , // Name: Active Energy Received , Last Complete Interval (Inc kWh rec C) - [3418,4] as INT64
// { 3422, 3} , // Name: Active Energy Delivered - Received , Last Complete Interval (Inc kWh d-r C) - [3422,4] as INT64
// { 3426, 3} , // Name: Reactive Energy Delivered , Last Complete Interval (Inc kVARh del C) - [3426,4] as INT64
// { 3430, 3} , // Name: Reactive Energy Received , Last Complete Interval (Inc kVARh rec C) - [3430,4] as INT64
// { 3434, 3} , // Name: Reactive Energy Delivered - Received , Last Complete Interval (Inc kVARh d-r C) - [3434,4] as INT64
// { 3438, 3} , // Name: Apparent Energy Delivered + Received , Last Complete Interval (Inc kVAh d+r C) - [3438,4] as INT64
// { 3442, 3} , // Name: Active Energy Delivered , Present Interval (Inc kWh del) - [3442,4] as INT64
// { 3446, 3} , // Name: Active Energy Received , Present Interval (Inc kWh rec) - [3446,4] as INT64
// { 3450, 3} , // Name: Active Energy Delivered - Received , Present Interval (Inc kWh d-r) - [3450,4] as INT64
// { 3454, 3} , // Name: Reactive Energy Delivered , Present Interval (Inc kVARh del) - [3454,4] as INT64
// { 3458, 3} , // Name: Reactive Energy Received , Present Interval (Inc kVARh rec) - [3458,4] as INT64
// { 3462, 3} , // Name: Reactive Energy Delivered - Received , Present Interval (Inc kVARh d-r) - [3462,4] as INT64
// { 3466, 3} , // Name: Apparent Energy Delivered + Received , Present Interval (Inc kVAh d+r) - [3466,4] as INT64
// { 3470, 3} , // Name: Active Energy Delivered Interval (kWh del int) - [3470,4] as INT64
// { 3474, 3} , // Name: Active Energy Received Interval (kWh rec int) - [3474,4] as INT64
// { 3478, 3} , // Name: Reactive Energy Delivered Interval (kVARh del int) - [3478,4] as INT64
// { 3482, 3} , // Name: Reactive Energy Received Interval (kVARh rec int) - [3482,4] as INT64
// { 3486, 3} , // Name: Apparent Energy Delivered Interval (kVAh del int) - [3486,4] as INT64
// { 3490, 3} , // Name: Apparent Energy Received Interval (kVAh rec int) - [3490,4] as INT64
// { 3650, 2} , // Name: Current A Squared Hours (MU Ia^2h) - [3650,2] as FLOAT32
// { 3652, 2} , // Name: Current B Square Hours (MU Ib^2h) - [3652,2] as FLOAT32
// { 3654, 2} , // Name: Current C Square Hours (MU Ic^2h) - [3654,2] as FLOAT32
// { 3656, 2} , // Name: Voltage A-B Square Hours (MU Vll ab^2h) - [3656,2] as FLOAT32
// { 3658, 2} , // Name: Voltage B-C Square Hours (MU Vll bc^2h) - [3658,2] as FLOAT32
// { 3660, 2} , // Name: Voltage C-A Square Hours (MU Vll ca^2h) - [3660,2] as FLOAT32
// { 3668, 2} , // Name: Current A Squared Hours (MU Ia^2h int) - [3668,2] as FLOAT32
// { 3670, 2} , // Name: Current B Square Hours (MU Ib^2h int) - [3670,2] as FLOAT32
// { 3672, 2} , // Name: Current C Square Hours (MU Ic^2h int) - [3672,2] as FLOAT32
// { 3674, 2} , // Name: Voltage A-B Square Hours (MU Vllab^2h int) - [3674,2] as FLOAT32
// { 3676, 2} , // Name: Voltage B-C Square Hours (MU Vllbc^2h int) - [3676,2] as FLOAT32
// { 3678, 2} , // Name: Voltage C-A Square Hours (MU Vllca^2h int) - [3678,2] as FLOAT32
// { 3680, 2} , // Name: Voltage A-N Square Hours (MU Vlna^2h int) - [3680,2] as FLOAT32
// { 3682, 2} , // Name: Voltage B-N Square Hours (MU Vlnb^2h int) - [3682,2] as FLOAT32
// { 3684, 2} , // Name: Voltage C-N Square Hours (MU Vlnc^2h int) - [3684,2] as FLOAT32
// { 4196, 3} , // Name: Active Energy Delivered Rate 1 (kWh del A) - [4196,4] as INT64
// { 4200, 3} , // Name: Active Energy Delivered Rate 2 (kWh del B) - [4200,4] as INT64
// { 4204, 3} , // Name: Active Energy Delivered Rate 3 (kWh del C) - [4204,4] as INT64
// { 4208, 3} , // Name: Active Energy Delivered Rate 4 (kWh del D) - [4208,4] as INT64
// { 4228, 3} , // Name: Active Energy Received Rate 1 (kWh rec A) - [4228,4] as INT64
// { 4232, 3} , // Name: Active Energy Received Rate 2 (kWh rec B) - [4232,4] as INT64
// { 4236, 3} , // Name: Active Energy Received Rate 3 (kWh rec C) - [4236,4] as INT64
// { 4240, 3} , // Name: Active Energy Received Rate 4 (kWh rec D) - [4240,4] as INT64
// { 4260, 3} , // Name: Reactive Energy Delivered Rate 1 (kVARh del A) - [4260,4] as INT64
// { 4264, 3} , // Name: Reactive Energy Delivered Rate 2 (kVARh del B) - [4264,4] as INT64
// { 4268, 3} , // Name: Reactive Energy Delivered Rate 3 (kVARh del C) - [4268,4] as INT64
// { 4272, 3} , // Name: Reactive Energy Delivered Rate 4 (kVARh del D) - [4272,4] as INT64
// { 4292, 3} , // Name: Reactive Energy Received Rate 1 (kVARh rec A) - [4292,4] as INT64
// { 4296, 3} , // Name: Reactive Energy Received Rate 2 (kVARh rec B) - [4296,4] as INT64
// { 4300, 3} , // Name: Reactive Energy Received Rate 3 (kVARh rec C) - [4300,4] as INT64
// { 4304, 3} , // Name: Reactive Energy Received Rate 4 (kVARh rec D) - [4304,4] as INT64
// { 4324, 3} , // Name: Apparent Energy Delivered Rate 1 (kVAh del A) - [4324,4] as INT64
// { 4328, 3} , // Name: Apparent Energy Delivered Rate 2 (kVAh del B) - [4328,4] as INT64
// { 4332, 3} , // Name: Apparent Energy Delivered Rate 3 (kVAh del C) - [4332,4] as INT64
// { 4336, 3} , // Name: Apparent Energy Delivered Rate 4 (kVAh del D) - [4336,4] as INT64
// { 4356, 3} , // Name: Apparent Energy Received Rate 1 (kVAh rec A) - [4356,4] as INT64
// { 4360, 3} , // Name: Apparent Energy Received Rate 2 (kVAh rec B) - [4360,4] as INT64
// { 4364, 3} , // Name: Apparent Energy Received Rate 3 (kVAh rec C) - [4364,4] as INT64
// { 4368, 3} , // Name: Apparent Energy Received Rate 4 (kVAh rec D) - [4368,4] as INT64
// { 4800, 2} , // Name: Active Energy Delivered Rate 1 (kWh del A) - [4800,2] as FLOAT32
// { 4802, 2} , // Name: Active Energy Delivered Rate 2 (kWh del B) - [4802,2] as FLOAT32
// { 4804, 2} , // Name: Active Energy Delivered Rate 3 (kWh del C) - [4804,2] as FLOAT32
// { 4806, 2} , // Name: Active Energy Delivered Rate 4 (kWh del D) - [4806,2] as FLOAT32
// { 4816, 2} , // Name: Active Energy Received Rate 1 (kWh rec A) - [4816,2] as FLOAT32
// { 4818, 2} , // Name: Active Energy Received Rate 2 (kWh rec B) - [4818,2] as FLOAT32
// { 4820, 2} , // Name: Active Energy Received Rate 3 (kWh rec C) - [4820,2] as FLOAT32
// { 4822, 2} , // Name: Active Energy Received Rate 4 (kWh rec D) - [4822,2] as FLOAT32
// { 4832, 2} , // Name: Reactive Energy Delivered Rate 1 (kVARh del A) - [4832,2] as FLOAT32
// { 4834, 2} , // Name: Reactive Energy Delivered Rate 2 (kVARh del B) - [4834,2] as FLOAT32
// { 4836, 2} , // Name: Reactive Energy Delivered Rate 3 (kVARh del C) - [4836,2] as FLOAT32
// { 4838, 2} , // Name: Reactive Energy Delivered Rate 4 (kVARh del D) - [4838,2] as FLOAT32
// { 4848, 2} , // Name: Reactive Energy Received Rate 1 (kVARh rec A) - [4848,2] as FLOAT32
// { 4850, 2} , // Name: Reactive Energy Received Rate 2 (kVARh rec B) - [4850,2] as FLOAT32
// { 4852, 2} , // Name: Reactive Energy Received Rate 3 (kVARh rec C) - [4852,2] as FLOAT32
// { 4854, 2} , // Name: Reactive Energy Received Rate 4 (kVARh rec D) - [4854,2] as FLOAT32
// { 4864, 2} , // Name: Apparent Energy Delivered Rate 1 (kVAh del A) - [4864,2] as FLOAT32
// { 4866, 2} , // Name: Apparent Energy Delivered Rate 2 (kVAh del B) - [4866,2] as FLOAT32
// { 4868, 2} , // Name: Apparent Energy Delivered Rate 3 (kVAh del C) - [4868,2] as FLOAT32
// { 4870, 2} , // Name: Apparent Energy Delivered Rate 4 (kVAh del D) - [4870,2] as FLOAT32
// { 4880, 2} , // Name: Apparent Energy Received Rate 1 (kVAh rec A) - [4880,2] as FLOAT32
// { 4882, 2} , // Name: Apparent Energy Received Rate 2 (kVAh rec B) - [4882,2] as FLOAT32
// { 4884, 2} , // Name: Apparent Energy Received Rate 3 (kVAh rec C) - [4884,2] as FLOAT32
// { 4886, 2} , // Name: Apparent Energy Received Rate 4 (kVAh rec D) - [4886,2] as FLOAT32
// { 14045, 2} , // Name: Pickup Setpoint (Over I 4 High Limit) - [14045,2] as FLOAT32
// { 14049, 2} , // Name: Dropout Setpoint (Over I 4 Low Limit) - [14049,2] as FLOAT32
// { 14325, 2} , // Name: Pickup Setpoint (Over kW sd High Limit) - [14325,2] as FLOAT32
// { 14329, 2} , // Name: Dropout Setpoint (Over kW sd Low Limit) - [14329,2] as FLOAT32
// { 14585, 2} , // Name: Pickup Setpoint (Over I a High Limit) - [14585,2] as FLOAT32
// { 14589, 2} , // Name: Dropout Setpoint (Over I a Low Limit) - [14589,2] as FLOAT32
// { 14605, 2} , // Name: Pickup Setpoint (Over I b High Limit) - [14605,2] as FLOAT32
// { 14609, 2} , // Name: Dropout Setpoint (Over I b Low Limit) - [14609,2] as FLOAT32
// { 14625, 2} , // Name: Pickup Setpoint (Over I c High Limit) - [14625,2] as FLOAT32
// { 14629, 2} , // Name: Dropout Setpoint (Over I c Low Limit) - [14629,2] as FLOAT32
// { 21000, 2} , // Name: HS Current A (HS I a) - [21000,2] as FLOAT32
// { 21002, 2} , // Name: HS Current B (HS I b) - [21002,2] as FLOAT32
// { 21004, 2} , // Name: HS Current C (HS I c) - [21004,2] as FLOAT32
// { 21006, 2} , // Name: HS Current N (HS I 4) - [21006,2] as FLOAT32
// { 21008, 2} , // Name: HS Current G (HS I 5) - [21008,2] as FLOAT32
// { 21010, 2} , // Name: HS Current Avg (HS I avg) - [21010,2] as FLOAT32
// { 21016, 2} , // Name: HS Frequency (HS Freq) - [21016,2] as FLOAT32
// { 21018, 2} , // Name: HS Voltage, A-B (HS Vll ab) - [21018,2] as FLOAT32
// { 21020, 2} , // Name: HS Voltage, B-C (HS Vll bc) - [21020,2] as FLOAT32
// { 21022, 2} , // Name: HS Voltage, C-A (HS Vll ca) - [21022,2] as FLOAT32
// { 21024, 2} , // Name: HS Voltage, L-L Average (HS Vll avg) - [21024,2] as FLOAT32
// { 21026, 2} , // Name: HS Voltage, A-N (HS Vln a) - [21026,2] as FLOAT32
// { 21028, 2} , // Name: HS Voltage, B-N (HS Vln b) - [21028,2] as FLOAT32
// { 21030, 2} , // Name: HS Voltage, C-N (HS Vln c) - [21030,2] as FLOAT32
// { 21034, 2} , // Name: HS Voltage, L-N Average (HS Vln avg) - [21034,2] as FLOAT32
// { 21040, 2} , // Name: HS Active Power A (HS kW a) - [21040,2] as FLOAT32
// { 21042, 2} , // Name: HS Active Power B (HS kW b) - [21042,2] as FLOAT32
// { 21044, 2} , // Name: HS Active Power C (HS kW c) - [21044,2] as FLOAT32
// { 21046, 2} , // Name: HS Active Power Total (HS kW tot) - [21046,2] as FLOAT32
// { 21048, 2} , // Name: HS Reactive Power A (HS kVAR a) - [21048,2] as FLOAT32
// { 21050, 2} , // Name: HS Reactive Power B (HS kVAR b) - [21050,2] as FLOAT32
// { 21052, 2} , // Name: HS Reactive Power C (HS kVAR c) - [21052,2] as FLOAT32
// { 21054, 2} , // Name: HS Reactive Power Total (HS kVAR tot) - [21054,2] as FLOAT32
// { 21056, 2} , // Name: HS Apparent Power A (HS kVA a) - [21056,2] as FLOAT32
// { 21058, 2} , // Name: HS Apparent Power B (HS kVA b) - [21058,2] as FLOAT32
// { 21060, 2} , // Name: HS Apparent Power C (HS kVA c) - [21060,2] as FLOAT32
// { 21062, 2} , // Name: HS Apparent Power Total (HS kVA tot) - [21062,2] as FLOAT32
// { 21358, 2} , // Name: K-Factor A (I1 K Factor) - [21358,2] as FLOAT32
// { 21360, 2} , // Name: K-Factor B (I2 K Factor) - [21360,2] as FLOAT32
// { 21362, 2} , // Name: K-Factor C (I3 K Factor) - [21362,2] as FLOAT32
// { 27218, 2} , // Name: Min Current A (I a mn) - [27218,2] as FLOAT32
// { 27220, 2} , // Name: Min Current B (I b mn) - [27220,2] as FLOAT32
// { 27222, 2} , // Name: Min Current C (I c mn) - [27222,2] as FLOAT32
// { 27224, 2} , // Name: Min Current N (I4 mn) - [27224,2] as FLOAT32
// { 27226, 2} , // Name: Min Current G (I5 mn) - [27226,2] as FLOAT32
// { 27228, 2} , // Name: Min Current Avg (I avg mn) - [27228,2] as FLOAT32
// { 27238, 2} , // Name: Min Voltage A-B (Vll ab mn) - [27238,2] as FLOAT32
// { 27240, 2} , // Name: Min Voltage B-C (Vll bc mn) - [27240,2] as FLOAT32
// { 27242, 2} , // Name: Min Voltage C-A (Vll ca mn) - [27242,2] as FLOAT32
// { 27244, 2} , // Name: Min Voltage L-L Avg (Vll avg mn) - [27244,2] as FLOAT32
// { 27246, 2} , // Name: Min Voltage A-N (Vln a mn) - [27246,2] as FLOAT32
// { 27248, 2} , // Name: Min Voltage B-N (Vln b mn) - [27248,2] as FLOAT32
// { 27250, 2} , // Name: Min Voltage C-N (Vln c mn) - [27250,2] as FLOAT32
// { 27254, 2} , // Name: Min Voltage L-N Avg (Vln avg mn) - [27254,2] as FLOAT32
// { 27278, 2} , // Name: Min Active Power Total (kW tot mn) - [27278,2] as FLOAT32
// { 27286, 2} , // Name: Min Reactive Power Total (kVAR tot mn) - [27286,2] as FLOAT32
// { 27294, 2} , // Name: Min Apparent Power Total (kVA tot mn) - [27294,2] as FLOAT32
// { 27616, 2} , // Name: Min Frequency (Freq mn) - [27616,2] as FLOAT32
// { 27644, 2} , // Name: Current A Low (I a low) - [27644,2] as FLOAT32
// { 27646, 2} , // Name: Current B Low (I b low) - [27646,2] as FLOAT32
// { 27648, 2} , // Name: Current C Low (I c low) - [27648,2] as FLOAT32
// { 27650, 2} , // Name: Current N Low (I4 low) - [27650,2] as FLOAT32
// { 27652, 2} , // Name: Current Avg Low (I avg low) - [27652,2] as FLOAT32
// { 27654, 2} , // Name: Voltage A-B Low (Vll ab low) - [27654,2] as FLOAT32
// { 27656, 2} , // Name: Voltage B-C Low (Vll bc low) - [27656,2] as FLOAT32
// { 27658, 2} , // Name: Voltage C-A Low (Vll ca low) - [27658,2] as FLOAT32
// { 27660, 2} , // Name: Voltage L-L Avg Low (Vll avg low) - [27660,2] as FLOAT32
// { 27672, 2} , // Name: Active Power Low (kW tot low) - [27672,2] as FLOAT32
// { 27674, 2} , // Name: Reactive Power Low (kVAR tot low) - [27674,2] as FLOAT32
// { 27676, 2} , // Name: Apparent Power Low (kVA tot low) - [27676,2] as FLOAT32
// { 27682, 2} , // Name: Frequency Low (Freq low) - [27682,2] as FLOAT32
// { 27694, 2} , // Name: Max Current A (I a mx) - [27694,2] as FLOAT32
// { 27696, 2} , // Name: Max Current B (I b mx) - [27696,2] as FLOAT32
// { 27698, 2} , // Name: Max Current C (I c mx) - [27698,2] as FLOAT32
// { 27700, 2} , // Name: Max Current N (I4 mx) - [27700,2] as FLOAT32
// { 27702, 2} , // Name: Max Current G (I5 mx) - [27702,2] as FLOAT32
// { 27704, 2} , // Name: Max Current Avg (I avg mx) - [27704,2] as FLOAT32
// { 27714, 2} , // Name: Max Voltage A-B (Vll ab mx) - [27714,2] as FLOAT32
// { 27716, 2} , // Name: Max Voltage B-C (Vll bc mx) - [27716,2] as FLOAT32
// { 27718, 2} , // Name: Max Voltage C-A (Vll ca mx) - [27718,2] as FLOAT32
// { 27720, 2} , // Name: Max Voltage L-L Avg (Vll avg mx) - [27720,2] as FLOAT32
// { 27722, 2} , // Name: Max Voltage A-N (Vln a mx) - [27722,2] as FLOAT32
// { 27724, 2} , // Name: Max Voltage B-N (Vln b mx) - [27724,2] as FLOAT32
// { 27726, 2} , // Name: Max Voltage C-N (Vln c mx) - [27726,2] as FLOAT32
// { 27730, 2} , // Name: Max Voltage L-N Avg (Vln avg mx) - [27730,2] as FLOAT32
// { 27754, 2} , // Name: Max Active Power Total (kW tot mx) - [27754,2] as FLOAT32
// { 27762, 2} , // Name: Max Reactive Power Total (kVAR tot mx) - [27762,2] as FLOAT32
// { 27770, 2} , // Name: Max Apparent Power Total (kVA tot mx) - [27770,2] as FLOAT32
// { 28092, 2} , // Name: Max Frequency (Freq mx) - [28092,2] as FLOAT32
// { 28120, 2} , // Name: Current A High (I a high) - [28120,2] as FLOAT32
// { 28122, 2} , // Name: Current B High (I b high) - [28122,2] as FLOAT32
// { 28124, 2} , // Name: Current C High (I c high) - [28124,2] as FLOAT32
// { 28126, 2} , // Name: Current N High (I 4 high) - [28126,2] as FLOAT32
// { 28128, 2} , // Name: Current Avg High (I avg high) - [28128,2] as FLOAT32
// { 28130, 2} , // Name: Voltage A-B High (Vll ab high) - [28130,2] as FLOAT32
// { 28132, 2} , // Name: Voltage B-C High (Vll bc high) - [28132,2] as FLOAT32
// { 28134, 2} , // Name: Voltage C-A High (Vll ca high) - [28134,2] as FLOAT32
// { 28136, 2} , // Name: Voltage L-L Avg High (Vll avg high) - [28136,2] as FLOAT32
// { 28162, 2} , // Name: Active Power High (kW tot high) - [28162,2] as FLOAT32
// { 28164, 2} , // Name: Reactive Power High (kVAR tot high) - [28164,2] as FLOAT32
// { 28166, 2} , // Name: Apparent Power High (kVA tot high) - [28166,2] as FLOAT32
// { 28172, 2} , // Name: Frequency High (Freq high) - [28172,2] as FLOAT32
// { 28180, 2} , // Name: Current A Mean (I a mean) - [28180,2] as FLOAT32
// { 28182, 2} , // Name: Current B Mean (I b mean) - [28182,2] as FLOAT32
// { 28184, 2} , // Name: Current C Mean (I c mean) - [28184,2] as FLOAT32
// { 28186, 2} , // Name: Current N Mean (I 4 mean) - [28186,2] as FLOAT32
// { 28188, 2} , // Name: Current Avg Mean (I avg mean) - [28188,2] as FLOAT32
// { 28190, 2} , // Name: Voltage A-B Mean (Vll ab mean) - [28190,2] as FLOAT32
// { 28192, 2} , // Name: Voltage B-C Mean (Vll bc mean) - [28192,2] as FLOAT32
// { 28194, 2} , // Name: Voltage C-A Mean (Vll ca mean) - [28194,2] as FLOAT32
// { 28196, 2} , // Name: Voltage L-L Avg Mean (Vll avg mean) - [28196,2] as FLOAT32
// { 28208, 2} , // Name: Active Power Mean (kW tot mean) - [28208,2] as FLOAT32
// { 28210, 2} , // Name: Reactive Power Mean (kVAR tot mean) - [28210,2] as FLOAT32
// { 28212, 2} , // Name: Apparent Power Mean (kVA tot mean) - [28212,2] as FLOAT32
// { 28218, 2} , // Name: Frequency Mean (Freq mean) - [28218,2] as FLOAT32
// { 29884, 2} , // Name: Current A Last Demand (I a sd) - [29884,2] as FLOAT32
// { 29886, 2} , // Name: Current A Predicted Demand (I a sd pred) - [29886,2] as FLOAT32
// { 29888, 0} , // Name: Current A Peak Demand (I a sd mx) - [29888,6] as TIMESTAMPED_FLOAT32
// { 29898, 2} , // Name: Current B Last Demand (I b sd) - [29898,2] as FLOAT32
// { 29900, 2} , // Name: Current B Predicted Demand (I b sd pred) - [29900,2] as FLOAT32
// { 29902, 0} , // Name: Current B Peak Demand (I b sd mx) - [29902,6] as TIMESTAMPED_FLOAT32
// { 29912, 2} , // Name: Current C Last Demand (I c sd) - [29912,2] as FLOAT32
// { 29914, 2} , // Name: Current C Predicted Demand (I c sd pred) - [29914,2] as FLOAT32
// { 29916, 0} , // Name: Current C Peak Demand (I c sd mx) - [29916,6] as TIMESTAMPED_FLOAT32
// { 29926, 2} , // Name: Current 4 Last Demand (I 4 sd) - [29926,2] as FLOAT32
// { 29928, 2} , // Name: Current 4 Predicted Demand (I 4 sd pred) - [29928,2] as FLOAT32
// { 29930, 0} , // Name: Current 4 Peak Demand (I 4 sd mx) - [29930,6] as TIMESTAMPED_FLOAT32
// { 29940, 2} , // Name: Current Avg Last Demand (I avg sd) - [29940,2] as FLOAT32
// { 29942, 2} , // Name: Current Avg Predicted Demand (I avg sd pred) - [29942,2] as FLOAT32
// { 29944, 0} , // Name: Current Avg Peak Demand (I avg sd mx) - [29944,6] as TIMESTAMPED_FLOAT32
// { 29954, 2} , // Name: Active Power Last Demand (kW sd del-rec) - [29954,2] as FLOAT32
// { 29956, 2} , // Name: Active Power Predicted Demand (kW pr del-rec) - [29956,2] as FLOAT32
// { 29958, 0} , // Name: Active Power Peak Demand (kW sd mx d-r) - [29958,6] as TIMESTAMPED_FLOAT32
// { 29968, 2} , // Name: Active Power Del Last Demand (kW sd del) - [29968,2] as FLOAT32
// { 29970, 2} , // Name: Active Power Del Predicted Demand (kW pr del) - [29970,2] as FLOAT32
// { 29972, 0} , // Name: Active Power Del Peak Demand (kW sd mx del) - [29972,6] as TIMESTAMPED_FLOAT32
// { 29982, 2} , // Name: Active Power Rec Last Demand (kW sd rec) - [29982,2] as FLOAT32
// { 29984, 2} , // Name: Active Power Rec Predicted Demand (kW pr rec) - [29984,2] as FLOAT32
// { 29986, 0} , // Name: Active Power Rec Peak Demand (kW sd mx rec) - [29986,6] as TIMESTAMPED_FLOAT32
// { 29996, 2} , // Name: Active Power Total Last Demand (kW sd del+rec) - [29996,2] as FLOAT32
// { 29998, 2} , // Name: Active Power Total Predicted Demand (kW pr del+rec) - [29998,2] as FLOAT32
// { 30000, 0} , // Name: Active Power Total Peak Demand (kW sd mx d+r) - [30000,6] as TIMESTAMPED_FLOAT32
// { 30010, 2} , // Name: Reactive Power Last Demand (kVAR sd del-rec) - [30010,2] as FLOAT32
// { 30012, 2} , // Name: Reactive Power Predicted Demand (kVAR pr del-rec) - [30012,2] as FLOAT32
// { 30014, 0} , // Name: Reactive Power Peak Demand (kVAR sd mx d-r) - [30014,6] as TIMESTAMPED_FLOAT32
// { 30024, 2} , // Name: Reactive Power Del Last Demand (kVAR sd del) - [30024,2] as FLOAT32
// { 30026, 2} , // Name: Reactive Power Del Predicted Demand (kVAR pr del) - [30026,2] as FLOAT32
// { 30028, 0} , // Name: Reactive Power Del Peak Demand (kVAR sd mx del) - [30028,6] as TIMESTAMPED_FLOAT32
// { 30038, 2} , // Name: Reactive Power Rec Last Demand (kVAR sd rec) - [30038,2] as FLOAT32
// { 30040, 2} , // Name: Reactive Power Rec Predicted Demand (kVAR pr rec) - [30040,2] as FLOAT32
// { 30042, 0} , // Name: Reactive Power Rec Peak Demand (kVAR sd mx rec) - [30042,6] as TIMESTAMPED_FLOAT32
// { 30052, 2} , // Name: Reactive Power Total Last Demand (kVAR sd del+rec) - [30052,2] as FLOAT32
// { 30054, 2} , // Name: Reactive Power Total Predicted Demand (kVAR pr del+rec) - [30054,2] as FLOAT32
// { 30056, 0} , // Name: Reactive Power Total Peak Demand (kVAR sd mx d+r) - [30056,6] as TIMESTAMPED_FLOAT32
// { 30066, 2} , // Name: Apparent Power Last Demand (kVA sd del-rec) - [30066,2] as FLOAT32
// { 30068, 2} , // Name: Apparent Power Predicted Demand (kVA pr del-rec) - [30068,2] as FLOAT32
// { 30070, 0} , // Name: Apparent Power Peak Demand (kVA sd mx d-r) - [30070,6] as TIMESTAMPED_FLOAT32
// { 30080, 2} , // Name: Apparent Power Del Last Demand (kVA sd del) - [30080,2] as FLOAT32
// { 30082, 2} , // Name: Apparent Power Del Predicted Demand (kVA pr del) - [30082,2] as FLOAT32
// { 30084, 0} , // Name: Apparent Power Del Peak Demand (kVA sd mx del) - [30084,6] as TIMESTAMPED_FLOAT32
// { 30094, 2} , // Name: Apparent Power Rec Last Demand (kVA sd rec) - [30094,2] as FLOAT32
// { 30096, 2} , // Name: Apparent Power Rec Predicted Demand (kVA pr rec) - [30096,2] as FLOAT32
// { 30098, 0} , // Name: Apparent Power Rec Peak Demand (kVA sd mx rec) - [30098,6] as TIMESTAMPED_FLOAT32
// { 30108, 2} , // Name: Apparent Power Total Last Demand (kVA sd del+rec) - [30108,2] as FLOAT32
// { 30110, 2} , // Name: Apparent Power Total Predicted Demand (kVA pr del+rec) - [30110,2] as FLOAT32
// { 30112, 0} , // Name: Apparent Power Total Peak Demand (kVA sd mx d+r) - [30112,6] as TIMESTAMPED_FLOAT32
// { 30222, 2} , // Name: Active Power Del A Last Demand (kW sd del A) - [30222,2] as FLOAT32
// { 30224, 2} , // Name: Active Power Del A Predicted Demand (kW pr del A) - [30224,2] as FLOAT32
// { 30226, 0} , // Name: Active Power Del A Peak Demand (kW sd mx del A) - [30226,6] as TIMESTAMPED_FLOAT32
// { 30236, 2} , // Name: Active Power Del B Last Demand (kW sd del B) - [30236,2] as FLOAT32
// { 30238, 2} , // Name: Active Power Del B Predicted Demand (kW pr del B) - [30238,2] as FLOAT32
// { 30240, 0} , // Name: Active Power Del B Peak Demand (kW sd mx del B) - [30240,6] as TIMESTAMPED_FLOAT32
// { 30250, 2} , // Name: Active Power Del C Last Demand (kW sd del C) - [30250,2] as FLOAT32
// { 30252, 2} , // Name: Active Power Del C Predicted Demand (kW pr del C) - [30252,2] as FLOAT32
// { 30254, 0} , // Name: Active Power Del C Peak Demand (kW sd mx del C) - [30254,6] as TIMESTAMPED_FLOAT32
// { 30264, 2} , // Name: Active Power Del D Last Demand (kW sd del D) - [30264,2] as FLOAT32
// { 30266, 2} , // Name: Active Power Del D Predicted Demand (kW pr del D) - [30266,2] as FLOAT32
// { 30268, 0} , // Name: Active Power Del D Peak Demand (kW sd mx del D) - [30268,6] as TIMESTAMPED_FLOAT32
// { 30278, 2} , // Name: Active Power Rec A Last Demand (kW sd rec A) - [30278,2] as FLOAT32
// { 30280, 2} , // Name: Active Power Rec A Predicted Demand (kW pr rec A) - [30280,2] as FLOAT32
// { 30282, 0} , // Name: Active Power Rec A Peak Demand (kW sd mx rec A) - [30282,6] as TIMESTAMPED_FLOAT32
// { 30292, 2} , // Name: Active Power Rec B Last Demand (kW sd rec B) - [30292,2] as FLOAT32
// { 30294, 2} , // Name: Active Power Rec B Predicted Demand (kW pr rec B) - [30294,2] as FLOAT32
// { 30296, 0} , // Name: Active Power Rec B Peak Demand (kW sd mx rec B) - [30296,6] as TIMESTAMPED_FLOAT32
// { 30306, 2} , // Name: Active Power Rec C Last Demand (kW sd rec C) - [30306,2] as FLOAT32
// { 30308, 2} , // Name: Active Power Rec C Predicted Demand (kW pr rec C) - [30308,2] as FLOAT32
// { 30310, 0} , // Name: Active Power Rec C Peak Demand (kW sd mx rec C) - [30310,6] as TIMESTAMPED_FLOAT32
// { 30320, 2} , // Name: Active Power Rec D Last Demand (kW sd rec D) - [30320,2] as FLOAT32
// { 30322, 2} , // Name: Active Power Rec D Predicted Demand (kW pr rec D) - [30322,2] as FLOAT32
// { 30324, 0} , // Name: Active Power Rec D Peak Demand (kW sd mx rec D) - [30324,6] as TIMESTAMPED_FLOAT32
// { 30334, 2} , // Name: Reactive Power Del A Last Demand (kVAR sd del A) - [30334,2] as FLOAT32
// { 30336, 2} , // Name: Reactive Power Del A Predicted Demand (kVAR pr del A) - [30336,2] as FLOAT32
// { 30338, 0} , // Name: Reactive Power Del A Peak Demand (kVAR sd mx d A) - [30338,6] as TIMESTAMPED_FLOAT32
// { 30348, 2} , // Name: Reactive Power Del B Last Demand (kVAR sd del B) - [30348,2] as FLOAT32
// { 30350, 2} , // Name: Reactive Power Del B Predicted Demand (kVAR pr del B) - [30350,2] as FLOAT32
// { 30352, 0} , // Name: Reactive Power Del B Peak Demand (kVAR sd mx d B) - [30352,6] as TIMESTAMPED_FLOAT32
// { 30362, 2} , // Name: Reactive Power Del C Last Demand (kVAR sd del C) - [30362,2] as FLOAT32
// { 30364, 2} , // Name: Reactive Power Del C Predicted Demand (kVAR pr del C) - [30364,2] as FLOAT32
// { 30366, 0} , // Name: Reactive Power Del C Peak Demand (kVAR sd mx d C) - [30366,6] as TIMESTAMPED_FLOAT32
// { 30376, 2} , // Name: Reactive Power Del D Last Demand (kVAR sd del D) - [30376,2] as FLOAT32
// { 30378, 2} , // Name: Reactive Power Del D Predicted Demand (kVAR pr del D) - [30378,2] as FLOAT32
// { 30380, 0} , // Name: Reactive Power Del D Peak Demand (kVAR sd mx d D) - [30380,6] as TIMESTAMPED_FLOAT32
// { 30390, 2} , // Name: Reactive Power Rec A Last Demand (kVAR sd rec A) - [30390,2] as FLOAT32
// { 30392, 2} , // Name: Reactive Power Rec A Predicted Demand (kVAR pr rec A) - [30392,2] as FLOAT32
// { 30394, 0} , // Name: Reactive Power Rec A Peak Demand (kVAR sd mx r A) - [30394,6] as TIMESTAMPED_FLOAT32
// { 30404, 2} , // Name: Reactive Power Rec B Last Demand (kVAR sd rec B) - [30404,2] as FLOAT32
// { 30406, 2} , // Name: Reactive Power Rec B Predicted Demand (kVAR pr rec B) - [30406,2] as FLOAT32
// { 30408, 0} , // Name: Reactive Power Rec B Peak Demand (kVAR sd mx r B) - [30408,6] as TIMESTAMPED_FLOAT32
// { 30418, 2} , // Name: Reactive Power Rec C Last Demand (kVAR sd rec C) - [30418,2] as FLOAT32
// { 30420, 2} , // Name: Reactive Power Rec C Predicted Demand (kVAR pr rec C) - [30420,2] as FLOAT32
// { 30422, 0} , // Name: Reactive Power Rec C Peak Demand (kVAR sd mx r C) - [30422,6] as TIMESTAMPED_FLOAT32
// { 30432, 2} , // Name: Reactive Power Rec D Last Demand (kVAR sd rec D) - [30432,2] as FLOAT32
// { 30434, 2} , // Name: Reactive Power Rec D Predicted Demand (kVAR pr rec D) - [30434,2] as FLOAT32
// { 30436, 0} , // Name: Reactive Power Rec D Peak Demand (kVAR sd mx r D) - [30436,6] as TIMESTAMPED_FLOAT32
// { 30446, 2} , // Name: Apparent Power Del A Last Demand (kVA sd del A) - [30446,2] as FLOAT32
// { 30448, 2} , // Name: Apparent Power Del A Predicted Demand (kVA pr del A) - [30448,2] as FLOAT32
// { 30450, 0} , // Name: Apparent Power Del A Peak Demand (kVA sd mx del A) - [30450,6] as TIMESTAMPED_FLOAT32
// { 30460, 2} , // Name: Apparent Power Del B Last Demand (kVA sd del B) - [30460,2] as FLOAT32
// { 30462, 2} , // Name: Apparent Power Del B Predicted Demand (kVA pr del B) - [30462,2] as FLOAT32
// { 30464, 0} , // Name: Apparent Power Del B Peak Demand (kVA sd mx del B) - [30464,6] as TIMESTAMPED_FLOAT32
// { 30474, 2} , // Name: Apparent Power Del C Last Demand (kVA sd del C) - [30474,2] as FLOAT32
// { 30476, 2} , // Name: Apparent Power Del C Predicted Demand (kVA pr del C) - [30476,2] as FLOAT32
// { 30478, 0} , // Name: Apparent Power Del C Peak Demand (kVA sd mx del C) - [30478,6] as TIMESTAMPED_FLOAT32
// { 30488, 2} , // Name: Apparent Power Del D Last Demand (kVA sd del D) - [30488,2] as FLOAT32
// { 30490, 2} , // Name: Apparent Power Del D Predicted Demand (kVA pr del D) - [30490,2] as FLOAT32
// { 30492, 0} , // Name: Apparent Power Del D Peak Demand (kVA sd mx del D) - [30492,6] as TIMESTAMPED_FLOAT32
// { 30502, 2} , // Name: Apparent Power Rec A Last Demand (kVA sd rec A) - [30502,2] as FLOAT32
// { 30504, 2} , // Name: Apparent Power Rec A Predicted Demand (kVA pr rec A) - [30504,2] as FLOAT32
// { 30506, 0} , // Name: Apparent Power Rec A Peak Demand (kVA sd mx rec A) - [30506,6] as TIMESTAMPED_FLOAT32
// { 30516, 2} , // Name: Apparent Power Rec B Last Demand (kVA sd rec B) - [30516,2] as FLOAT32
// { 30518, 2} , // Name: Apparent Power Rec B Predicted Demand (kVA pr rec B) - [30518,2] as FLOAT32
// { 30520, 0} , // Name: Apparent Power Rec B Peak Demand (kVA sd mx rec B) - [30520,6] as TIMESTAMPED_FLOAT32
// { 30530, 2} , // Name: Apparent Power Rec C Last Demand (kVA sd rec C) - [30530,2] as FLOAT32
// { 30532, 2} , // Name: Apparent Power Rec C Predicted Demand (kVA pr rec C) - [30532,2] as FLOAT32
// { 30534, 0} , // Name: Apparent Power Rec C Peak Demand (kVA sd mx rec C) - [30534,6] as TIMESTAMPED_FLOAT32
// { 30544, 2} , // Name: Apparent Power Rec D Last Demand (kVA sd rec D) - [30544,2] as FLOAT32
// { 30546, 2} , // Name: Apparent Power Rec D Predicted Demand (kVA pr rec D) - [30546,2] as FLOAT32
// { 30548, 0} , // Name: Apparent Power Rec D Peak Demand (kVA sd mx rec D) - [30548,6] as TIMESTAMPED_FLOAT32
// { 30558, 2} , // Name: Active Power Q1 Last Demand (kW sd Q1) - [30558,2] as FLOAT32
// { 30560, 2} , // Name: Active Power Q1 Predicted Demand (kW pr Q1) - [30560,2] as FLOAT32
// { 30562, 0} , // Name: Active Power Q1 Peak Demand (kW sd mx Q1) - [30562,6] as TIMESTAMPED_FLOAT32
// { 30572, 2} , // Name: Active Power Q2 Last Demand (kW sd Q2) - [30572,2] as FLOAT32
// { 30574, 2} , // Name: Active Power Q2 Predicted Demand (kW pr Q2) - [30574,2] as FLOAT32
// { 30576, 0} , // Name: Active Power Q2 Peak Demand (kW sd mx Q2) - [30576,6] as TIMESTAMPED_FLOAT32
// { 30586, 2} , // Name: Active Power Q3 Last Demand (kW sd Q3) - [30586,2] as FLOAT32
// { 30588, 2} , // Name: Active Power Q3 Predicted Demand (kW pr Q3) - [30588,2] as FLOAT32
// { 30590, 0} , // Name: Active Power Q3 Peak Demand (kW sd mx Q3) - [30590,6] as TIMESTAMPED_FLOAT32
// { 30600, 2} , // Name: Active Power Q4 Last Demand (kW sd Q4) - [30600,2] as FLOAT32
// { 30602, 2} , // Name: Active Power Q4 Predicted Demand (kW pr Q4) - [30602,2] as FLOAT32
// { 30604, 0} , // Name: Active Power Q4 Peak Demand (kW sd mx Q4) - [30604,6] as TIMESTAMPED_FLOAT32
// { 30614, 2} , // Name: Reactive Power Q1 Last Demand (kVAR sd Q1) - [30614,2] as FLOAT32
// { 30616, 2} , // Name: Reactive Power Q1 Predicted Demand (kVAR pr Q1) - [30616,2] as FLOAT32
// { 30618, 0} , // Name: Reactive Power Q1 Peak Demand (kVAR sd mx Q1) - [30618,6] as TIMESTAMPED_FLOAT32
// { 30628, 2} , // Name: Reactive Power Q2 Last Demand (kVAR sd Q2) - [30628,2] as FLOAT32
// { 30630, 2} , // Name: Reactive Power Q2 Predicted Demand (kVAR pr Q2) - [30630,2] as FLOAT32
// { 30632, 0} , // Name: Reactive Power Q2 Peak Demand (kVAR sd mx Q2) - [30632,6] as TIMESTAMPED_FLOAT32
// { 30642, 2} , // Name: Reactive Power Q3 Last Demand (kVAR sd Q3) - [30642,2] as FLOAT32
// { 30644, 2} , // Name: Reactive Power Q3 Predicted Demand (kVAR pr Q3) - [30644,2] as FLOAT32
// { 30646, 0} , // Name: Reactive Power Q3 Peak Demand (kVAR sd mx Q3) - [30646,6] as TIMESTAMPED_FLOAT32
// { 30656, 2} , // Name: Reactive Power Q4 Last Demand (kVAR sd Q4) - [30656,2] as FLOAT32
// { 30658, 2} , // Name: Reactive Power Q4 Predicted Demand (kVAR pr Q4) - [30658,2] as FLOAT32
// { 30660, 0} , // Name: Reactive Power Q4 Peak Demand (kVAR sd mx Q4) - [30660,6] as TIMESTAMPED_FLOAT32
// { 30670, 2} , // Name: Apparent Power Q1 Last Demand (kVA sd Q1) - [30670,2] as FLOAT32
// { 30672, 2} , // Name: Apparent Power Q1 Predicted Demand (kVA pr Q1) - [30672,2] as FLOAT32
// { 30674, 0} , // Name: Apparent Power Q1 Peak Demand (kVA sd mx Q1) - [30674,6] as TIMESTAMPED_FLOAT32
// { 30684, 2} , // Name: Apparent Power Q2 Last Demand (kVA sd Q2) - [30684,2] as FLOAT32
// { 30686, 2} , // Name: Apparent Power Q2 Predicted Demand (kVA pr Q2) - [30686,2] as FLOAT32
// { 30688, 0} , // Name: Apparent Power Q2 Peak Demand (kVA sd mx Q2) - [30688,6] as TIMESTAMPED_FLOAT32
// { 30698, 2} , // Name: Apparent Power Q3 Last Demand (kVA sd Q3) - [30698,2] as FLOAT32
// { 30700, 2} , // Name: Apparent Power Q3 Predicted Demand (kVA pr Q3) - [30700,2] as FLOAT32
// { 30702, 0} , // Name: Apparent Power Q3 Peak Demand (kVA sd mx Q3) - [30702,6] as TIMESTAMPED_FLOAT32
// { 30712, 2} , // Name: Apparent Power Q4 Last Demand (kVA sd Q4) - [30712,2] as FLOAT32
// { 30714, 2} , // Name: Apparent Power Q4 Predicted Demand (kVA pr Q4) - [30714,2] as FLOAT32
// { 30716, 0} , // Name: Apparent Power Q4 Peak Demand (kVA sd mx Q4) - [30716,6] as TIMESTAMPED_FLOAT32
// { 30822, 2} , // Name: Block Demand Active Power (kVA co kW d-r) - [30822,2] as FLOAT32
// { 30824, 2} , // Name: Block Demand Active Power Into the Load (kVA co kW del) - [30824,2] as FLOAT32
// { 30826, 2} , // Name: Block Demand Active Power Out of the Load (kVA co kW rec) - [30826,2] as FLOAT32
// { 30828, 2} , // Name: Block Demand Active Power Total (kVA co kW d+r) - [30828,2] as FLOAT32
// { 30830, 2} , // Name: Block Demand Reactive Power (kVA co kVAR d-r) - [30830,2] as FLOAT32
// { 30832, 2} , // Name: Block Demand Reactive Power Into the Load (kVA co kVAR del) - [30832,2] as FLOAT32
// { 30834, 2} , // Name: Block Demand Reactive Power Out of the Load (kVA co kVAR rec) - [30834,2] as FLOAT32
// { 30836, 2} , // Name: Block Demand Reactive Power Total (kVA co kVAR d+r) - [30836,2] as FLOAT32
// { 30838, 2} , // Name: Block Demand Active Power (kVAR co kW d-r) - [30838,2] as FLOAT32
// { 30840, 2} , // Name: Block Demand Active Power Into the Load (kVAR co kW del) - [30840,2] as FLOAT32
// { 30842, 2} , // Name: Block Demand Active Power Out of the Load (kVAR co kW rec) - [30842,2] as FLOAT32
// { 30844, 2} , // Name: Block Demand Active Power Total (kVAR co kW d+r) - [30844,2] as FLOAT32
// { 30846, 2} , // Name: Block Demand Apparent Power (kVAR co kVA d-r) - [30846,2] as FLOAT32
// { 30848, 2} , // Name: Block Demand Apparent Power Into the Load (kVAR co kVA del) - [30848,2] as FLOAT32
// { 30850, 2} , // Name: Block Demand Apparent Power Out of the Load (kVAR co kVA rec) - [30850,2] as FLOAT32
// { 30852, 2} , // Name: Block Demand Apparent Power Total (kVAR co kVA d+r) - [30852,2] as FLOAT32
// { 30854, 2} , // Name: Block Demand Reactive Power (kW co kVAR d-r) - [30854,2] as FLOAT32
// { 30856, 2} , // Name: Block Demand Reactive Power Into the Load (kW co kVAR del) - [30856,2] as FLOAT32
// { 30858, 2} , // Name: Block Demand Reactive Power Out of the Load (kW co kVAR rec) - [30858,2] as FLOAT32
// { 30860, 2} , // Name: Block Demand Reactive Power Total (kW co kVAR d+r) - [30860,2] as FLOAT32
// { 30862, 2} , // Name: Block Demand Apparent Power (kW co kVA d-r) - [30862,2] as FLOAT32
// { 30864, 2} , // Name: Block Demand Apparent Power Into the Load (kW co kVA del) - [30864,2] as FLOAT32
// { 30866, 2} , // Name: Block Demand Apparent Power Out of the Load (kW co kVA rec) - [30866,2] as FLOAT32
// { 30868, 2} , // Name: Block Demand Apparent Power Total (kW co kVA d+r) - [30868,2] as FLOAT32
// { 30870, 3} , // Name: Active Energy Delivered Rate 1 (PB kWh del A) - [30870,4] as INT64
// { 30874, 3} , // Name: Active Energy Delivered Rate 2 (PB kWh del B) - [30874,4] as INT64
// { 30878, 3} , // Name: Active Energy Delivered Rate 3 (PB kWh del C) - [30878,4] as INT64
// { 30882, 3} , // Name: Active Energy Delivered Rate 4 (PB kWh del D) - [30882,4] as INT64
// { 30886, 3} , // Name: Active Energy Delivered (PB kWh del) - [30886,4] as INT64
// { 30890, 3} , // Name: Active Energy Received (PB kWh rec) - [30890,4] as INT64
// { 30894, 3} , // Name: Reactive Energy Delivered (PB kVARh del) - [30894,4] as INT64
// { 30898, 3} , // Name: Reactive Energy Received (PB kVARh rec) - [30898,4] as INT64
// { 30902, 3} , // Name: Apparent Energy Delivered (PB kVAh del) - [30902,4] as INT64
// { 30906, 3} , // Name: Apparent Energy Received (PB kVAh rec) - [30906,4] as INT64
// { 30910, 2} , // Name: Peak Block Demand Active Power Delived Rate 1 (PB kW sd mx d A) - [30910,2] as FLOAT32
// { 30912, 2} , // Name: Peak Block Demand Active Power Delived Rate 2 (PB kW sd mx d B) - [30912,2] as FLOAT32
// { 30914, 2} , // Name: Peak Block Demand Active Power Delived Rate 3 (PB kW sd mx d C) - [30914,2] as FLOAT32
// { 30916, 2} , // Name: Peak Block Demand Active Power Delived Rate 4 (PB kW sd mx d D) - [30916,2] as FLOAT32
// { 30918, 2} , // Name: Peak Block Demand Active Power Received (PB kW sd mx rec) - [30918,2] as FLOAT32
// { 30920, 2} , // Name: Peak Block Demand Reactive Power Delivered (PB kVAR sd mx d) - [30920,2] as FLOAT32
// { 30922, 2} , // Name: Peak Block Demand Reactive Power Received (PB kVAR sd mx r) - [30922,2] as FLOAT32
// { 30924, 2} , // Name: Peak Block Demand Apparent Power Delivered (PB kVA sd mx d) - [30924,2] as FLOAT32
// { 30926, 2} , // Name: Peak Block Demand Apparent Power Received (PB kVA sd mx r) - [30926,2] as FLOAT32
// { 30928, 3} , // Name: Active Energy Delivered Rate 1 (PS kWh del A) - [30928,4] as INT64
// { 30932, 3} , // Name: Active Energy Delivered Rate 2 (PS kWh del B) - [30932,4] as INT64
// { 30936, 3} , // Name: Active Energy Delivered Rate 3 (PS kWh del C) - [30936,4] as INT64
// { 30940, 3} , // Name: Active Energy Delivered Rate 4 (PS kWh del D) - [30940,4] as INT64
// { 30944, 3} , // Name: Active Energy Delivered (PS kWh del) - [30944,4] as INT64
// { 30948, 3} , // Name: Active Energy Received (PS kWh rec) - [30948,4] as INT64
// { 30952, 3} , // Name: Reactive Energy Delivered (PS kVARh del) - [30952,4] as INT64
// { 30956, 3} , // Name: Reactive Energy Received (PS kVARh rec) - [30956,4] as INT64
// { 30960, 3} , // Name: Apparent Energy Delivered (PS kVAh del) - [30960,4] as INT64
// { 30964, 3} , // Name: Apparent Energy Received (PS kVAh rec) - [30964,4] as INT64
// { 30968, 2} , // Name: Peak Block Demand Active Power Delived Rate 1 (PS kW sd mx d A) - [30968,2] as FLOAT32
// { 30970, 2} , // Name: Peak Block Demand Active Power Delived Rate 2 (PS kW sd mx d B) - [30970,2] as FLOAT32
// { 30972, 2} , // Name: Peak Block Demand Active Power Delived Rate 3 (PS kW sd mx d C) - [30972,2] as FLOAT32
// { 30974, 2} , // Name: Peak Block Demand Active Power Delived Rate 4 (PS kW sd mx d D) - [30974,2] as FLOAT32
// { 30976, 2} , // Name: Peak Block Demand Active Power Received (PS kW sd mx rec) - [30976,2] as FLOAT32
// { 30978, 2} , // Name: Peak Block Demand Reactive Power Delivered (PS kVAR sd mx d) - [30978,2] as FLOAT32
// { 30980, 2} , // Name: Peak Block Demand Reactive Power Received (PS kVAR sd mx r) - [30980,2] as FLOAT32
// { 30982, 2} , // Name: Peak Block Demand Apparent Power Delivered (PS kVA sd mx d) - [30982,2] as FLOAT32
// { 30984, 2} , // Name: Peak Block Demand Apparent Power Received (PS kVA sd mx r) - [30984,2] as FLOAT32
// { 30986, 2} , // Name: Active Energy Delivered Rate 1 (PB kWh del A) - [30986,2] as FLOAT32
// { 30988, 2} , // Name: Active Energy Delivered Rate 2 (PB kWh del B) - [30988,2] as FLOAT32
// { 30990, 2} , // Name: Active Energy Delivered Rate 3 (PB kWh del C) - [30990,2] as FLOAT32
// { 30992, 2} , // Name: Active Energy Delivered Rate 4 (PB kWh del D) - [30992,2] as FLOAT32
// { 30994, 2} , // Name: Active Energy Delivered (PB kWh del) - [30994,2] as FLOAT32
// { 30996, 2} , // Name: Active Energy Received (PB kWh rec) - [30996,2] as FLOAT32
// { 30998, 2} , // Name: Reactive Energy Delivered (PB kVARh del) - [30998,2] as FLOAT32
// { 31000, 2} , // Name: Reactive Energy Received (PB kVARh rec) - [31000,2] as FLOAT32
// { 31002, 2} , // Name: Apparent Energy Delivered (PB kVAh del) - [31002,2] as FLOAT32
// { 31004, 2} , // Name: Apparent Energy Received (PB kVAh rec) - [31004,2] as FLOAT32
// { 31006, 2} , // Name: Active Energy Delivered Rate 1 (PS kWh del A) - [31006,2] as FLOAT32
// { 31008, 2} , // Name: Active Energy Delivered Rate 2 (PS kWh del B) - [31008,2] as FLOAT32
// { 31010, 2} , // Name: Active Energy Delivered Rate 3 (PS kWh del C) - [31010,2] as FLOAT32
// { 31012, 2} , // Name: Active Energy Delivered Rate 4 (PS kWh del D) - [31012,2] as FLOAT32
// { 31014, 2} , // Name: Active Energy Delivered (PS kWh del) - [31014,2] as FLOAT32
// { 31016, 2} , // Name: Active Energy Received (PS kWh rec) - [31016,2] as FLOAT32
// { 31018, 2} , // Name: Reactive Energy Delivered (PS kVARh del) - [31018,2] as FLOAT32
// { 31020, 2} , // Name: Reactive Energy Received (PS kVARh rec) - [31020,2] as FLOAT32
// { 31022, 2} , // Name: Apparent Energy Delivered (PS kVAh del) - [31022,2] as FLOAT32
// { 31024, 2} , // Name: Apparent Energy Received (PS kVAh rec) - [31024,2] as FLOAT32
// { 34352, 2} , // Name: Current, Phase A 3 Second (150/180 Cycles) (I1 3s) - [34352,2] as FLOAT32
// { 34354, 2} , // Name: Current, Phase A 10 Minute (I1 10m) - [34354,2] as FLOAT32
// { 34358, 2} , // Name: Current, Phase B 3 Second (150/180 Cycles) (I2 3s) - [34358,2] as FLOAT32
// { 34360, 2} , // Name: Current, Phase B 10 Minute (I2 10m) - [34360,2] as FLOAT32
// { 34364, 2} , // Name: Current, Phase C 3 Second (150/180 Cycles) (I3 3s) - [34364,2] as FLOAT32
// { 34366, 2} , // Name: Current, Phase C 10 Minute (I3 10m) - [34366,2] as FLOAT32
// { 34400, 2} , // Name: Voltage, A-N 3 Second (150/180 Cycles) (V1 3s) - [34400,2] as FLOAT32
// { 34402, 2} , // Name: Voltage, A-N 10 Minute (V1 10m) - [34402,2] as FLOAT32
// { 34404, 2} , // Name: Voltage, A-N 2 Hour (V1 2hr) - [34404,2] as FLOAT32
// { 34406, 2} , // Name: Voltage, B-N 3 Second (150/180 Cycles) (V2 3s) - [34406,2] as FLOAT32
// { 34408, 2} , // Name: Voltage, B-N 10 Minute (V2 10m) - [34408,2] as FLOAT32
// { 34410, 2} , // Name: Voltage, B-N 2 Hour (V2 2hr) - [34410,2] as FLOAT32
// { 34412, 2} , // Name: Voltage, C-N 3 Second (150/180 Cycles) (V3 3s) - [34412,2] as FLOAT32
// { 34414, 2} , // Name: Voltage, C-N 10 Minute (V3 10m) - [34414,2] as FLOAT32
// { 34416, 2} , // Name: Voltage, C-N 2 Hour (V3 2hr) - [34416,2] as FLOAT32
// { 34472, 2} , // Name: Power Frequency 3 Second (150/180 Cycles) (Power Frequency) - [34472,2] as FLOAT32
// { 34474, 2} , // Name: Power Frequency 10 Minute (Power Freq 10m) - [34474,2] as FLOAT32
// { 34476, 2} , // Name: Power Frequency 2 Hour (Power Freq 2hr) - [34476,2] as FLOAT32
// { 40000, 2} , // Name: Frequency 10m Mean (PQ Freq mean) - [40000,2] as FLOAT32
// { 40002, 2} , // Name: Frequency 10m Low (PQ Freq low) - [40002,2] as FLOAT32
// { 40004, 2} , // Name: Frequency 10m High (PQ Freq high) - [40004,2] as FLOAT32
// { 40006, 2} , // Name: Frequency Minimum (PQ Freq mn-op) - [40006,2] as FLOAT32
// { 40008, 2} , // Name: Frequency Maximum (PQ Freq mx-op) - [40008,2] as FLOAT32
// { 40010, 2} , // Name: V1 10m Mean (PQ V1 mean) - [40010,2] as FLOAT32
// { 40012, 2} , // Name: V1 10m Low (PQ V1 low) - [40012,2] as FLOAT32
// { 40014, 2} , // Name: V1 10m High (PQ V1 high) - [40014,2] as FLOAT32
// { 40016, 2} , // Name: V2 10m Mean (PQ V2 mean) - [40016,2] as FLOAT32
// { 40018, 2} , // Name: V2 10m Low (PQ V2 low) - [40018,2] as FLOAT32
// { 40020, 2} , // Name: V2 10m High (PQ V2 high) - [40020,2] as FLOAT32
// { 40022, 2} , // Name: V3 10m Mean (PQ V3 mean) - [40022,2] as FLOAT32
// { 40024, 2} , // Name: V3 10m Low (PQ V3 low) - [40024,2] as FLOAT32
// { 40026, 2} , // Name: V3 10m High (PQ V3 high) - [40026,2] as FLOAT32
// { 54396, 1} , // Name: FAC1 Nominal Frequency (N/A) - [54396,1] as INT16U
// { 56977, 0} , // Name: COM1 RTS Delay (N/A) - [56977,2] as INT32
}
;

View File

@ -0,0 +1,27 @@
#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
uint32_t getRegisterUInt32(uint16_t highWord, uint16_t lowWord) {
uint32_t val = (highWord << 16) + lowWord;
return val;
}
int32_t getRegisterInt32(uint16_t highWord, uint16_t lowWord) {
int32_t val = (highWord << 16) + lowWord;
return val;
}
int64_t getRegisterInt64(uint16_t word1, uint16_t word2, uint16_t word3, uint16_t word4) {
uint64_t val = ((uint64_t)word1 << 48) + ((uint64_t)word2 << 32) + (word3 << 16) + word4;
return val;
}
float getRegisterFloat(uint16_t highWord, uint16_t lowWord) {
uint32_t floatRaw = ((uint32_t)highWord << 16) | lowWord;
float floatValue;
memcpy(&floatValue, &floatRaw, sizeof(float));
return floatValue;
}