
Modbus Reading and GSM/GPS Data Logging for Schneider
PowerLogic PM8000 using SIM808 Breakout - GSM & GPS,
BAT Input
This is a specification and implementation of an Arduino-based Modbus data logger with GSM data transmission and GPS location
tracking for the Schneider PowerLogic PM8000. This software is designed for Vivarox EMS and only Vivarox has the right to use
and modify this software.

Arduino Implementation:
This project uses an Arduino to connect to Modbus devices, read information, transmit it via GSM to a remote server, and provide
GPS location data.

Hardware needed:

1. Arduino Board Recommended: Arduino MEGA 2560 (for more memory and I/O pins) or Arduino UNO (for simpler
projects).

2. RS485 to TTL Module Allows communication between the Arduino and Modbus devices using the RS485 protocol.

3. SIM808 Breakout - GSM & GPS, BAT Input Enables the Arduino to send data over cellular networks and provide GPS
location data.

4. Power Supply To power the Arduino and connected peripherals. The SIM808 module requires a dedicated power supply
capable of providing up to 2A current.

5. LED Indicators Two LEDs for status indication.

6. Capacitors 100uF and 10uF capacitors for power supply stabilization.

7. GPS Antenna For receiving GPS signals.

Wiring

Wiring Diagram

Arduino Mega/Uno SIM808 Breakout Description
----------------- --------------- -----------
 5V ----> VCC Power supply (via 2A dedicated supply)
 GND ----> GND Ground
 2 (RX) <---- TX SIM808 TX to Arduino RX
 3 (TX) ----> RX Arduino TX to SIM808 RX

 7 ----> DI (RS485) RS485 Driver Input
 8 <---- RO (RS485) RS485 Receiver Output
 4 ----> DE/RE (RS485) RS485 Driver Enable/Receiver Enable

 3 ----> LED A Status LED A
 5 ----> LED B Status LED B

Power Supply

 VCC ----> + (2A) Dedicated 2A power supply positive
 GND ----> - (GND) Dedicated 2A power supply ground

Capacitors

 VCC ----|(---- GND 100uF capacitor
 VCC ---||---- GND 10uF capacitor

 GPS Antenna
 |
 |
 [SIM808 Breakout Module]

Wiring Notes:

1. Ensure the power supply can provide 2A current.
2. Place the 100uF and 10uF capacitors as close to the SIM808 module’s power pins as possible.
3. The RS485 connections are optional and depend on your specific requirements.

4. LEDs should be connected with appropriate current-limiting resistors (not shown in diagram).
5. The SIM808 module’s GPS antenna should be connected securely.
6. Double-check all connections before powering on the system.

Software

Modbus Library: ModbusMaster
GSM/GPS Library: TinyGSM (recommended for SIM808)
NeoSWSerial: For better latency on software serial communication with Modbus

Implementation Details

1. Modbus Configuration:

Slave ID: 101
Baud Rate: 9600
Register map: Defined in separate “register_map_pm8000.h” file

2. Data Logging and Transmission:

Frequency: Readings taken and transmitted every minute
Data Format: CSV (Comma-Separated Values) string
Data Structure: Timestamp, GPS coordinates, followed by register values
Header Row: Includes register addresses for easy identification

3. Register Types Supported:

Float (32-bit)
Integer (32-bit)
String (up to 20 characters)

4. Error Handling and Status Indication:

LED A: Indicates successful data transmission
LED B: Indicates errors (e.g., GSM issues, Modbus communication errors)
Serial output for debugging (9600 baud)

5. GPS Functionality:

Provides real-time location data
Supports various NMEA sentences (GGA, GSA, GSV, RMC)
Can be used for geofencing applications

6. Special Features:

Robust error handling for GSM/GPS and Modbus communication
Header sent once at the beginning of each session
Configurable APN and server URL
GPS power saving mode available

Programming Workflow

1. Initialize hardware (SIM808 module, RS485 module)
2. Set up Modbus communication parameters
3. Configure GSM and GPS settings
4. Enter main loop:

Read data from Modbus registers
Obtain GPS location
Format data into CSV string including GPS coordinates
Send data via GSM to server
Handle any errors and provide status indication via LEDs
Delay for 1 minute before next reading and transmission

Memory Limitations and Register Customization

Memory Constraints

The Arduino, particularly models like the UNO and MEGA, has limited memory available for storing program code and variables.
This limitation affects the number of Modbus registers that can be defined and read in a single project.

Arduino UNO: 32 KB Flash (program storage), 2 KB SRAM
Arduino MEGA: 256 KB Flash, 8 KB SRAM

Due to these constraints, the number of registers that can be defined in the register_map_pm8000.h file is not unlimited. The
exact number will depend on the complexity of your code and other libraries used.

Customizing the Register Map

To adapt this project to your specific needs, you can modify the register_map_pm8000.h file. This file contains the definitions of
Modbus registers to be read by the Arduino.

To customize the register map:

1. Open the register_map_pm8000.h file in your Arduino IDE or text editor.

2. Locate the registers array in the file. It should look something like this:

 const RegisterInfo registers[] PROGMEM = {
 {40001, 2}, // Example register
 {40003, 1},
 // ... other registers ...
 };

1. To remove a register, simply comment out its line by adding // at the beginning:

 const RegisterInfo registers[] PROGMEM = {
 {40001, 2}, // Example register
 // {40003, 1}, // This register is now commented out and won't be read
 // ... other registers ...
 };

1. To add a new register, add a new line to the array with the register address and type:

 const RegisterInfo registers[] PROGMEM = {
 {40001, 2}, // Example register
 {40003, 1},
 {40005, 2}, // New register added
 // ... other registers ...
 };

1. Remember to keep the array syntax correct, with commas between entries and a semicolon at the end of the array.

Best Practices
Start by commenting out registers you don’t need before adding new ones.
If you’re using an Arduino UNO, you may need to be more selective about which registers to include due to memory
constraints.
Test your modifications incrementally to ensure the Arduino can handle the memory load.
If you need to read a large number of registers, consider using an Arduino MEGA or a more powerful microcontroller.
Ensure your GSM data plan can handle the amount of data being transmitted.
Regularly check your server to ensure data is being received correctly.
Position the GPS antenna with a clear view of the sky for best performance.

Important AT Commands for SIM808
Here are some important AT commands used in this project:

1. AT+CGNSPWR=1: Turn on GNSS power supply.
2. AT+CGNSSEQ="RMC": Set the last NMEA sentence to RMC (Recommended Minimum Specific GNSS Data).
3. AT+CGNSINF: Get GNSS navigation information.
4. AT+CGNSURC=2: Set URC reporting every 2 GNSS fixes.
5. AT+CGDCONT=1,"IP","APN_NAME": Set the APN for your cellular provider.
6. AT+HTTPINIT: Initialize HTTP service.
7. AT+HTTPSSL=1: Enable SSL for HTTPS connections (if required).
8. AT+HTTPPARA="URL","http://your-server-url.com/upload": Set the server URL.
9. AT+HTTPDATA=<size>,10000: Prepare to send HTTP POST data.

10. AT+HTTPACTION=1: Send HTTP POST request.

Remember to replace “APN_NAME” and “http://your-server-url.com/upload” with your specific values.

Troubleshooting
1. If you encounter communication issues, double-check your wiring and ensure all connections are secure.
2. Verify that your APN settings are correct for your cellular provider.
3. If the module isn’t responding, try resetting it and check your power supply.
4. Use AT commands like AT+CSQ to check signal strength and AT+CREG? to check network registration status.
5. If GPS data isn’t being received, ensure the GPS antenna has a clear view of the sky.
6. If data isn’t being sent, verify your TCP connection settings and ensure you have an active data plan.
7. Use AT+CGNSINF to check GPS fix status and information.

By carefully managing the registers in the register_map_pm8000.h file and configuring your SIM808 settings, you can customize
this Modbus reader to suit your specific requirements while staying within the memory limitations of your Arduino board and
optimizing data transmission and GPS functionality.

http://your-server-url.com/upload%22

	Modbus Reading and GSM/GPS Data Logging for Schneider PowerLogic PM8000 using SIM808 Breakout - GSM & GPS, BAT Input
	Arduino Implementation:
	Hardware needed:
	Wiring
	Wiring Diagram
	Wiring Notes:

	Software
	Implementation Details
	Programming Workflow

	Memory Limitations and Register Customization
	Memory Constraints
	Customizing the Register Map

	Best Practices
	Important AT Commands for SIM808
	Troubleshooting

