arduino/firmware/modbus-sd-VSD-generic/modbus-sd-VSD-generic.ino
2024-12-04 19:46:06 +02:00

266 lines
6.6 KiB
C++

#include <Wire.h>
#include <RTClib.h>
#include <NeoSWSerial.h>
#include <ModbusMaster.h>
#include "util.h"
#include "register_map_vsd.h"
#include <SPI.h>
#include <SdFat.h>
#define SD_CS_PIN 10
#define DE_RE_PIN 4
#define RX_PIN 8
#define TX_PIN 7
#define SLAVE_ID 1
#define SERIAL_BAUDRATE 9600
#define MODBUS_SERIAL_BAUDRATE 19200
#define LED_A_PID 3
#define LED_B_PID 5
#define MAX_RETRIES 3
#define ERROR_VALUE -999.99
#define SPI_CLOCK SD_SCK_MHZ(50)
#if HAS_SDIO_CLASS
#define SD_CONFIG SdioConfig(FIFO_SDIO)
#elif ENABLE_DEDICATED_SPI
#define SD_CONFIG SdSpiConfig(SD_CS_PIN, DEDICATED_SPI, SPI_CLOCK)
#else
#define SD_CONFIG SdSpiConfig(SD_CS_PIN, SHARED_SPI, SPI_CLOCK)
#endif
RTC_DS3231 rtc;
SdFat32 sd;
File dataFile;
NeoSWSerial modbusSerial(RX_PIN, TX_PIN);
ModbusMaster node;
unsigned long lastRefreshTime = 0;
bool headerWritten = false;
bool booted = false;
void flicker(uint8_t pin, uint8_t times, uint16_t speed) {
while(times--) {
delay(speed);
digitalWrite(pin, HIGH);
delay(speed);
digitalWrite(pin, LOW);
}
}
void setup() {
booted = false;
pinMode(LED_A_PID, OUTPUT);
pinMode(LED_B_PID, OUTPUT);
digitalWrite(LED_A_PID, LOW);
digitalWrite(LED_B_PID, HIGH);
Serial.begin(SERIAL_BAUDRATE);
Serial.println(F("Startup \n"));
if (!rtc.begin()) {
Serial.println(F("Couldn't find RTC\n"));
flicker(LED_B_PID, 4, 1000);
digitalWrite(LED_B_PID, HIGH);
digitalWrite(LED_A_PID, HIGH);
return;
}
if (rtc.lostPower()) {
Serial.println(F("RTC lost power, let's set the time!\n"));
rtc.adjust(DateTime(F(__DATE__), F(__TIME__)));
flicker(LED_B_PID, 4, 500);
}
pinMode(SD_CS_PIN, OUTPUT);
if (!sd.begin(SD_CONFIG)) {
flicker(LED_B_PID, 2, 1000);
digitalWrite(LED_B_PID, HIGH);
sd.initErrorHalt(&Serial);
return;
}
pinMode(DE_RE_PIN, OUTPUT);
digitalWrite(DE_RE_PIN, LOW);
modbusSerial.begin(MODBUS_SERIAL_BAUDRATE);
node.begin(SLAVE_ID, modbusSerial);
node.preTransmission(preTransmission);
node.postTransmission(postTransmission);
flicker(LED_B_PID, 10, 100);
digitalWrite(LED_B_PID, LOW);
booted = true;
}
void preTransmission() {
digitalWrite(DE_RE_PIN, HIGH);
digitalWrite(LED_A_PID, HIGH);
}
void postTransmission() {
digitalWrite(DE_RE_PIN, LOW);
digitalWrite(LED_A_PID, LOW);
}
void writeDateTime(File &file) {
DateTime now = rtc.now();
file.print('\n');
file.print(now.year(), DEC);
file.print('-');
file.print(now.month(), DEC);
file.print('-');
file.print(now.day(), DEC);
file.print(' ');
file.print(now.hour(), DEC);
file.print(':');
file.print(now.minute(), DEC);
file.print(':');
file.print(now.second(), DEC);
file.print(',');
}
void getFilename(char* buffer) {
DateTime now = rtc.now();
sprintf(buffer, "pm8k_%d%02d%02d.csv", now.year(), now.month(), now.day());
}
float readRegisterWithRetry(uint16_t addr, uint8_t regtype) {
for(uint8_t retry = 0; retry < MAX_RETRIES; retry++) {
delay(10);
uint8_t result = node.readHoldingRegisters(addr - 1, 2);
if(result == node.ku8MBSuccess) {
switch(regtype) {
case 1:
return node.getResponseBuffer(0);
case 2:
return getRegisterFloat(node.getResponseBuffer(0), node.getResponseBuffer(1));
case 3:
return getRegisterInt64(node.getResponseBuffer(0), node.getResponseBuffer(1),
node.getResponseBuffer(2), node.getResponseBuffer(3));
}
}
Serial.print(F("Read error at register "));
Serial.print(addr);
Serial.print(F(", attempt "));
Serial.print(retry + 1);
Serial.print(F(" of "));
Serial.print(MAX_RETRIES);
Serial.print(F(", error code: "));
Serial.println(result);
delay(50 * (retry + 1));
flicker(LED_B_PID, 1, 50);
}
return ERROR_VALUE;
}
void writeHeader() {
if (!headerWritten) {
dataFile.print("\nDate Time,");
const uint16_t totalReg = sizeof(registers) / sizeof(registers[0]);
for (uint16_t i = 0; i < totalReg; i++) {
const uint16_t regaddr = pgm_read_word(&registers[i].regaddr);
dataFile.print("@");
dataFile.print(regaddr);
dataFile.print(",");
}
headerWritten = true;
flicker(LED_A_PID, 50, 10);
}
}
void loop() {
if (!booted) {
delay(10000);
digitalWrite(LED_A_PID, LOW);
return;
}
if (millis() - lastRefreshTime >= 1000) {
lastRefreshTime += 1000;
char filename[20];
getFilename(filename);
if (!dataFile.open(filename, FILE_WRITE)) {
flicker(LED_B_PID, 6, 500);
return;
}
writeHeader();
writeDateTime(dataFile);
const uint16_t totalReg = sizeof(registers) / sizeof(registers[0]);
float baseValues[4] = {ERROR_VALUE, ERROR_VALUE, ERROR_VALUE, ERROR_VALUE};
uint8_t errorCount = 0;
// Single pass for both reading and processing
for (uint16_t i = 0; i < totalReg; i++) {
const uint16_t regaddr = pgm_read_word(&registers[i].regaddr);
const uint8_t regtype = pgm_read_word(&registers[i].regtype);
const float scale = pgm_read_float(&registers[i].scale);
float value = ERROR_VALUE;
if (regtype <= 3 && regaddr > 0) {
value = readRegisterWithRetry(regaddr, regtype);
if (value == ERROR_VALUE) {
errorCount++;
if (errorCount > 5) {
dataFile.close();
flicker(LED_B_PID, 10, 100);
return;
}
}
if (i < 4) baseValues[i] = value;
} else {
bool validBase = true;
for(uint8_t j = 0; j < 4; j++) {
if (baseValues[j] == ERROR_VALUE) {
validBase = false;
break;
}
}
if (validBase) {
switch(regtype) {
case 4:
value = calculateStatusWord(baseValues);
break;
case 5:
value = calculateThermal(baseValues);
break;
case 6:
value = calculatePower(baseValues);
break;
case 7:
value = calculateRPM(baseValues);
break;
}
}
}
if (value != ERROR_VALUE) {
value *= scale;
}
dataFile.print(value);
dataFile.print(',');
}
dataFile.close();
if (errorCount > 0) {
Serial.print(F("Cycle completed with "));
Serial.print(errorCount);
Serial.println(F(" errors"));
flicker(LED_B_PID, errorCount, 200);
} else {
Serial.println(F("Cycle completed successfully"));
flicker(LED_A_PID, 4, 100);
}
if (errorCount > 5) {
Serial.println(F("Too many errors, aborting cycle"));
dataFile.close();
return;
}
}
}