package bun import ( "fmt" "go/ast" "go/parser" "go/token" "os" "path/filepath" "reflect" "regexp" "strings" "git.warky.dev/wdevs/relspecgo/pkg/models" "git.warky.dev/wdevs/relspecgo/pkg/readers" ) // Reader implements the readers.Reader interface for Bun Go model files type Reader struct { options *readers.ReaderOptions } // NewReader creates a new Bun reader with the given options func NewReader(options *readers.ReaderOptions) *Reader { return &Reader{ options: options, } } // ReadDatabase reads Bun Go model files and returns a Database model func (r *Reader) ReadDatabase() (*models.Database, error) { if r.options.FilePath == "" { return nil, fmt.Errorf("file path is required for Bun reader") } // Check if path is a directory or file info, err := os.Stat(r.options.FilePath) if err != nil { return nil, fmt.Errorf("failed to stat path: %w", err) } var files []string if info.IsDir() { // Read all .go files in directory entries, err := os.ReadDir(r.options.FilePath) if err != nil { return nil, fmt.Errorf("failed to read directory: %w", err) } for _, entry := range entries { if !entry.IsDir() && strings.HasSuffix(entry.Name(), ".go") && !strings.HasSuffix(entry.Name(), "_test.go") { files = append(files, filepath.Join(r.options.FilePath, entry.Name())) } } } else { files = append(files, r.options.FilePath) } if len(files) == 0 { return nil, fmt.Errorf("no Go files found") } // Parse all files and collect tables db := models.InitDatabase("database") schemaMap := make(map[string]*models.Schema) for _, file := range files { tables, err := r.parseFile(file) if err != nil { return nil, fmt.Errorf("failed to parse file %s: %w", file, err) } for _, table := range tables { // Get or create schema schema, ok := schemaMap[table.Schema] if !ok { schema = models.InitSchema(table.Schema) schemaMap[table.Schema] = schema } schema.Tables = append(schema.Tables, table) } } // Convert schema map to slice for _, schema := range schemaMap { db.Schemas = append(db.Schemas, schema) } return db, nil } // ReadSchema reads Bun Go model files and returns a Schema model func (r *Reader) ReadSchema() (*models.Schema, error) { db, err := r.ReadDatabase() if err != nil { return nil, err } if len(db.Schemas) == 0 { return nil, fmt.Errorf("no schemas found") } return db.Schemas[0], nil } // ReadTable reads a Bun Go model file and returns a Table model func (r *Reader) ReadTable() (*models.Table, error) { schema, err := r.ReadSchema() if err != nil { return nil, err } if len(schema.Tables) == 0 { return nil, fmt.Errorf("no tables found") } return schema.Tables[0], nil } // parseFile parses a single Go file and extracts table models func (r *Reader) parseFile(filename string) ([]*models.Table, error) { fset := token.NewFileSet() node, err := parser.ParseFile(fset, filename, nil, parser.ParseComments) if err != nil { return nil, fmt.Errorf("failed to parse Go file: %w", err) } var tables []*models.Table structMap := make(map[string]*models.Table) // First pass: collect struct definitions for _, decl := range node.Decls { genDecl, ok := decl.(*ast.GenDecl) if !ok || genDecl.Tok != token.TYPE { continue } for _, spec := range genDecl.Specs { typeSpec, ok := spec.(*ast.TypeSpec) if !ok { continue } structType, ok := typeSpec.Type.(*ast.StructType) if !ok { continue } // Check if this struct has bun tags (indicates it's a model) if r.hasModelFields(structType) { table := r.parseStruct(typeSpec.Name.Name, structType) if table != nil { structMap[typeSpec.Name.Name] = table tables = append(tables, table) } } } } // Second pass: find TableName() methods (for redundancy/verification) for _, decl := range node.Decls { funcDecl, ok := decl.(*ast.FuncDecl) if !ok || funcDecl.Name.Name != "TableName" { continue } // Get receiver type if funcDecl.Recv == nil || len(funcDecl.Recv.List) == 0 { continue } receiverType := r.getReceiverType(funcDecl.Recv.List[0].Type) if receiverType == "" { continue } // Find the table for this struct table, ok := structMap[receiverType] if !ok { continue } // Parse the return value (this is redundant with the bun tag, but provides verification) tableName, schemaName := r.parseTableNameMethod(funcDecl) if tableName != "" { table.Name = tableName if schemaName != "" { table.Schema = schemaName } // Update columns and indexes for _, col := range table.Columns { col.Table = tableName col.Schema = table.Schema } for _, idx := range table.Indexes { idx.Table = tableName idx.Schema = table.Schema } } } // Third pass: parse relationship fields for constraints for _, decl := range node.Decls { genDecl, ok := decl.(*ast.GenDecl) if !ok || genDecl.Tok != token.TYPE { continue } for _, spec := range genDecl.Specs { typeSpec, ok := spec.(*ast.TypeSpec) if !ok { continue } structType, ok := typeSpec.Type.(*ast.StructType) if !ok { continue } table, ok := structMap[typeSpec.Name.Name] if !ok { continue } // Parse relationship fields r.parseRelationshipConstraints(table, structType, structMap) } } return tables, nil } // getReceiverType extracts the type name from a receiver func (r *Reader) getReceiverType(expr ast.Expr) string { switch t := expr.(type) { case *ast.Ident: return t.Name case *ast.StarExpr: if ident, ok := t.X.(*ast.Ident); ok { return ident.Name } } return "" } // parseTableNameMethod parses a TableName() method and extracts the table and schema name func (r *Reader) parseTableNameMethod(funcDecl *ast.FuncDecl) (tableName string, schemaName string) { if funcDecl.Body == nil { return "", "" } // Look for return statement for _, stmt := range funcDecl.Body.List { retStmt, ok := stmt.(*ast.ReturnStmt) if !ok { continue } if len(retStmt.Results) == 0 { continue } // Get the return value (should be a string literal) if basicLit, ok := retStmt.Results[0].(*ast.BasicLit); ok { if basicLit.Kind == token.STRING { // Remove quotes fullName := strings.Trim(basicLit.Value, "\"") // Split schema.table if strings.Contains(fullName, ".") { parts := strings.SplitN(fullName, ".", 2) return parts[1], parts[0] } return fullName, "public" } } } return "", "" } // hasModelFields checks if the struct has fields with bun tags func (r *Reader) hasModelFields(structType *ast.StructType) bool { for _, field := range structType.Fields.List { if field.Tag != nil { tag := field.Tag.Value if strings.Contains(tag, "bun:") { return true } } } return false } // parseStruct converts an AST struct to a Table model func (r *Reader) parseStruct(structName string, structType *ast.StructType) *models.Table { // Extract table name from the first field's bun tag if present tableName := "" schemaName := "public" // Look for table name in struct tags for _, field := range structType.Fields.List { if field.Tag != nil { tag := field.Tag.Value if strings.Contains(tag, "bun:\"table:") { tableName, schemaName = r.extractTableNameFromTag(tag) break } } } // If no table name found, derive from struct name if tableName == "" { tableName = r.deriveTableName(structName) } table := models.InitTable(tableName, schemaName) sequence := uint(1) // Parse fields for _, field := range structType.Fields.List { if field.Tag == nil { continue } tag := field.Tag.Value if !strings.Contains(tag, "bun:") { continue } // Skip BaseModel and relationship fields if r.isBaseModel(field) || r.isRelationship(tag) { continue } // Get field name fieldName := "" if len(field.Names) > 0 { fieldName = field.Names[0].Name } // Parse column from tag column := r.parseColumn(fieldName, field.Type, tag, sequence) if column != nil { column.Table = tableName column.Schema = schemaName table.Columns[column.Name] = column // Parse indexes from bun tags r.parseIndexesFromTag(table, column, tag) sequence++ } } return table } // isBaseModel checks if a field is bun.BaseModel func (r *Reader) isBaseModel(field *ast.Field) bool { if len(field.Names) > 0 { return false // BaseModel is embedded, so it has no name } // Check if the type is bun.BaseModel selExpr, ok := field.Type.(*ast.SelectorExpr) if !ok { return false } ident, ok := selExpr.X.(*ast.Ident) if !ok { return false } return ident.Name == "bun" && selExpr.Sel.Name == "BaseModel" } // isRelationship checks if a field is a relationship based on bun tag func (r *Reader) isRelationship(tag string) bool { return strings.Contains(tag, "bun:\"rel:") || strings.Contains(tag, ",rel:") } // getRelationType extracts the relationship type from a bun tag func (r *Reader) getRelationType(bunTag string) string { if strings.Contains(bunTag, "rel:has-many") { return "has-many" } if strings.Contains(bunTag, "rel:belongs-to") { return "belongs-to" } if strings.Contains(bunTag, "rel:has-one") { return "has-one" } if strings.Contains(bunTag, "rel:many-to-many") { return "many-to-many" } return "" } // parseRelationshipConstraints parses relationship fields to extract foreign key constraints func (r *Reader) parseRelationshipConstraints(table *models.Table, structType *ast.StructType, structMap map[string]*models.Table) { for _, field := range structType.Fields.List { if field.Tag == nil { continue } tag := field.Tag.Value if !r.isRelationship(tag) { continue } bunTag := r.extractBunTag(tag) // Get the referenced type name from the field type referencedType := r.getRelationshipType(field.Type) if referencedType == "" { continue } // Find the referenced table referencedTable, ok := structMap[referencedType] if !ok { continue } // Parse the join information: join:user_id=id // This means: thisTable.user_id = referencedTable.id joinInfo := r.parseJoinInfo(bunTag) if joinInfo == nil { continue } // Determine which table gets the FK based on relationship type relType := r.getRelationType(bunTag) var fkTable *models.Table var fkColumn, refTable, refColumn string switch strings.ToLower(relType) { case "belongs-to": // For belongs-to: FK is on the current table // join:user_id=id means table.user_id references referencedTable.id fkTable = table fkColumn = joinInfo.ForeignKey refTable = referencedTable.Name refColumn = joinInfo.ReferencedKey case "has-many": // For has-many: FK is on the referenced table // join:id=user_id means referencedTable.user_id references table.id fkTable = referencedTable fkColumn = joinInfo.ReferencedKey refTable = table.Name refColumn = joinInfo.ForeignKey default: continue } constraint := &models.Constraint{ Name: fmt.Sprintf("fk_%s_%s", fkTable.Name, refTable), Type: models.ForeignKeyConstraint, Table: fkTable.Name, Schema: fkTable.Schema, Columns: []string{fkColumn}, ReferencedTable: refTable, ReferencedSchema: fkTable.Schema, ReferencedColumns: []string{refColumn}, OnDelete: "NO ACTION", // Bun doesn't specify this in tags OnUpdate: "NO ACTION", } fkTable.Constraints[constraint.Name] = constraint } } // JoinInfo holds parsed join information type JoinInfo struct { ForeignKey string // Column in the related table ReferencedKey string // Column in the current table } // parseJoinInfo parses join information from bun tag // Example: join:user_id=id means foreign_key=referenced_key func (r *Reader) parseJoinInfo(bunTag string) *JoinInfo { // Look for join: in the tag if !strings.Contains(bunTag, "join:") { return nil } // Extract join clause parts := strings.Split(bunTag, ",") for _, part := range parts { part = strings.TrimSpace(part) if strings.HasPrefix(part, "join:") { joinStr := strings.TrimPrefix(part, "join:") // Parse user_id=id joinParts := strings.SplitN(joinStr, "=", 2) if len(joinParts) == 2 { return &JoinInfo{ ForeignKey: joinParts[0], ReferencedKey: joinParts[1], } } } } return nil } // getRelationshipType extracts the type name from a relationship field func (r *Reader) getRelationshipType(expr ast.Expr) string { switch t := expr.(type) { case *ast.ArrayType: // []*ModelPost -> ModelPost if starExpr, ok := t.Elt.(*ast.StarExpr); ok { if ident, ok := starExpr.X.(*ast.Ident); ok { return ident.Name } } case *ast.StarExpr: // *ModelPost -> ModelPost if ident, ok := t.X.(*ast.Ident); ok { return ident.Name } } return "" } // parseIndexesFromTag extracts index definitions from Bun tags func (r *Reader) parseIndexesFromTag(table *models.Table, column *models.Column, tag string) { bunTag := r.extractBunTag(tag) // Parse tag into parts parts := strings.Split(bunTag, ",") for _, part := range parts { part = strings.TrimSpace(part) // Check for unique index if part == "unique" { // Auto-generate index name: idx_tablename_columnname indexName := fmt.Sprintf("idx_%s_%s", table.Name, column.Name) if _, exists := table.Indexes[indexName]; !exists { index := &models.Index{ Name: indexName, Table: table.Name, Schema: table.Schema, Columns: []string{column.Name}, Unique: true, Type: "btree", } table.Indexes[indexName] = index } } else if strings.HasPrefix(part, "unique:") { // Named unique index: unique:idx_name indexName := strings.TrimPrefix(part, "unique:") // Check if index already exists (for composite indexes) if idx, exists := table.Indexes[indexName]; exists { // Add this column to the existing index idx.Columns = append(idx.Columns, column.Name) } else { // Create new index index := &models.Index{ Name: indexName, Table: table.Name, Schema: table.Schema, Columns: []string{column.Name}, Unique: true, Type: "btree", } table.Indexes[indexName] = index } } } } // extractTableNameFromTag extracts table and schema from bun tag func (r *Reader) extractTableNameFromTag(tag string) (tableName string, schemaName string) { // Extract bun tag value re := regexp.MustCompile(`bun:"table:([^"]+)"`) matches := re.FindStringSubmatch(tag) if len(matches) < 2 { return "", "public" } tablePart := matches[1] parts := strings.Split(tablePart, ",") fullName := parts[0] // Split schema.table if strings.Contains(fullName, ".") { schemaParts := strings.SplitN(fullName, ".", 2) return schemaParts[1], schemaParts[0] } return fullName, "public" } // deriveTableName derives a table name from struct name func (r *Reader) deriveTableName(structName string) string { // Remove "Model" prefix if present name := strings.TrimPrefix(structName, "Model") // Convert PascalCase to snake_case var result strings.Builder for i, r := range name { if i > 0 && r >= 'A' && r <= 'Z' { result.WriteRune('_') } result.WriteRune(r) } return strings.ToLower(result.String()) } // parseColumn parses a struct field into a Column model func (r *Reader) parseColumn(fieldName string, fieldType ast.Expr, tag string, sequence uint) *models.Column { // Extract bun tag bunTag := r.extractBunTag(tag) if bunTag == "" { return nil } column := models.InitColumn("", "", "") column.Sequence = sequence // Parse bun tag parts := strings.Split(bunTag, ",") if len(parts) > 0 { column.Name = parts[0] } // Track if we found explicit nullability markers hasExplicitNullableMarker := false // Parse tag attributes for _, part := range parts[1:] { kv := strings.SplitN(part, ":", 2) key := kv[0] value := "" if len(kv) > 1 { value = kv[1] } switch key { case "type": // Parse type and extract length if present (e.g., varchar(255)) column.Type, column.Length = r.parseTypeWithLength(value) case "pk": column.IsPrimaryKey = true case "notnull": column.NotNull = true hasExplicitNullableMarker = true case "nullzero": column.NotNull = false hasExplicitNullableMarker = true case "autoincrement": column.AutoIncrement = true case "default": // Default value from Bun tag (e.g., default:gen_random_uuid()) column.Default = value } } // If no type specified in tag, derive from Go type if column.Type == "" { column.Type = r.goTypeToSQL(fieldType) } // Determine if nullable based on Go type and bun tags // In Bun: // - explicit "notnull" tag means NOT NULL // - explicit "nullzero" tag means nullable // - absence of explicit markers: infer from Go type if !hasExplicitNullableMarker { // Infer from Go type if no explicit marker found column.NotNull = !r.isNullableGoType(fieldType) } // Primary keys are always NOT NULL if column.IsPrimaryKey { column.NotNull = true } return column } // extractBunTag extracts the bun tag value from a struct tag func (r *Reader) extractBunTag(tag string) string { // Remove backticks tag = strings.Trim(tag, "`") // Use reflect.StructTag to properly parse st := reflect.StructTag(tag) return st.Get("bun") } // parseTypeWithLength parses a type string and extracts length if present // e.g., "varchar(255)" returns ("varchar", 255) func (r *Reader) parseTypeWithLength(typeStr string) (baseType string, length int) { // Check for type with length: varchar(255), char(10), etc. re := regexp.MustCompile(`^([a-zA-Z\s]+)\((\d+)\)$`) matches := re.FindStringSubmatch(typeStr) if len(matches) == 3 { if _, err := fmt.Sscanf(matches[2], "%d", &length); err == nil { baseType = strings.TrimSpace(matches[1]) return } } baseType = typeStr return } // goTypeToSQL maps Go types to SQL types func (r *Reader) goTypeToSQL(expr ast.Expr) string { switch t := expr.(type) { case *ast.Ident: switch t.Name { case "int", "int32": return "integer" case "int64": return "bigint" case "string": return "text" case "bool": return "boolean" case "float32": return "real" case "float64": return "double precision" } case *ast.SelectorExpr: // Handle types like time.Time, sql_types.SqlString, etc. if ident, ok := t.X.(*ast.Ident); ok { switch ident.Name { case "time": if t.Sel.Name == "Time" { return "timestamp" } case "resolvespec_common", "sql_types": return r.sqlTypeToSQL(t.Sel.Name) } } case *ast.StarExpr: // Pointer type - nullable version return r.goTypeToSQL(t.X) } return "text" } // sqlTypeToSQL maps sql_types types to SQL types func (r *Reader) sqlTypeToSQL(typeName string) string { switch typeName { case "SqlString": return "text" case "SqlInt": return "integer" case "SqlInt64": return "bigint" case "SqlFloat": return "double precision" case "SqlBool": return "boolean" case "SqlTime": return "timestamp" default: return "text" } } // isNullableGoType checks if a Go type represents a nullable field type // (this is for types that CAN be nullable, not whether they ARE nullable) func (r *Reader) isNullableGoType(expr ast.Expr) bool { switch t := expr.(type) { case *ast.StarExpr: // Pointer type can be nullable return true case *ast.SelectorExpr: // Check for sql_types nullable types if ident, ok := t.X.(*ast.Ident); ok { if ident.Name == "resolvespec_common" || ident.Name == "sql_types" { return strings.HasPrefix(t.Sel.Name, "Sql") } } } return false }