Files
relspecgo/test_data/mssql/TESTING.md
Hein 466d657ea7
All checks were successful
CI / Test (1.24) (push) Successful in -23m27s
CI / Test (1.25) (push) Successful in -23m4s
CI / Lint (push) Successful in -24m57s
CI / Build (push) Successful in -25m15s
Integration Tests / Integration Tests (push) Successful in -25m42s
feat(mssql): add MSSQL writer for generating DDL from database schema
- Implement MSSQL writer to generate SQL scripts for creating schemas, tables, and constraints.
- Support for identity columns, indexes, and extended properties.
- Add tests for column definitions, table creation, primary keys, foreign keys, and comments.
- Include testing guide and sample schema for integration tests.
2026-02-07 16:09:27 +02:00

287 lines
5.9 KiB
Markdown

# MSSQL Reader and Writer Testing Guide
## Prerequisites
- Docker and Docker Compose installed
- RelSpec binary built (`make build`)
- jq (optional, for JSON processing)
## Quick Start
### 1. Start SQL Server Express
```bash
docker-compose up -d mssql
# Wait for container to be healthy
docker-compose ps
# Monitor startup logs
docker-compose logs -f mssql
```
### 2. Verify Database Creation
```bash
docker exec -it $(docker-compose ps -q mssql) \
/opt/mssql-tools/bin/sqlcmd \
-S localhost \
-U sa \
-P 'StrongPassword123!' \
-Q "SELECT name FROM sys.databases WHERE name = 'RelSpecTest'"
```
## Testing Scenarios
### Scenario 1: Read MSSQL Database to JSON
Read the test schema from MSSQL and export to JSON:
```bash
./build/relspec convert \
--from mssql \
--from-conn "sqlserver://sa:StrongPassword123!@localhost:1433/RelSpecTest" \
--to json \
--to-path test_output.json
```
Verify output:
```bash
jq '.Schemas[0].Tables | length' test_output.json
jq '.Schemas[0].Tables[0]' test_output.json
```
### Scenario 2: Read MSSQL Database to DBML
Convert MSSQL schema to DBML format:
```bash
./build/relspec convert \
--from mssql \
--from-conn "sqlserver://sa:StrongPassword123!@localhost:1433/RelSpecTest" \
--to dbml \
--to-path test_output.dbml
```
### Scenario 3: Generate SQL Script (No Direct Execution)
Generate SQL script without executing:
```bash
./build/relspec convert \
--from mssql \
--from-conn "sqlserver://sa:StrongPassword123!@localhost:1433/RelSpecTest" \
--to mssql \
--to-path test_output.sql
```
Inspect generated SQL:
```bash
head -50 test_output.sql
```
### Scenario 4: Round-Trip Conversion (MSSQL → JSON → MSSQL)
Test bidirectional conversion:
```bash
# Step 1: MSSQL → JSON
./build/relspec convert \
--from mssql \
--from-conn "sqlserver://sa:StrongPassword123!@localhost:1433/RelSpecTest" \
--to json \
--to-path backup.json
# Step 2: JSON → MSSQL SQL
./build/relspec convert \
--from json \
--from-path backup.json \
--to mssql \
--to-path restore.sql
# Inspect SQL
cat restore.sql | head -50
```
### Scenario 5: Cross-Database Conversion
If you have PostgreSQL running, test conversion:
```bash
# MSSQL → PostgreSQL SQL
./build/relspec convert \
--from mssql \
--from-conn "sqlserver://sa:StrongPassword123!@localhost:1433/RelSpecTest" \
--to pgsql \
--to-path mssql_to_pg.sql
```
### Scenario 6: Test Type Mappings
Create a JSON file with various types and convert to MSSQL:
```json
{
"Name": "TypeTest",
"Schemas": [
{
"Name": "dbo",
"Tables": [
{
"Name": "type_samples",
"Columns": {
"id": {
"Name": "id",
"Type": "int",
"AutoIncrement": true,
"NotNull": true,
"Sequence": 1
},
"big_num": {
"Name": "big_num",
"Type": "int64",
"Sequence": 2
},
"is_active": {
"Name": "is_active",
"Type": "bool",
"Sequence": 3
},
"description": {
"Name": "description",
"Type": "text",
"Sequence": 4
},
"created_at": {
"Name": "created_at",
"Type": "timestamp",
"NotNull": true,
"Default": "GETDATE()",
"Sequence": 5
},
"unique_id": {
"Name": "unique_id",
"Type": "uuid",
"Sequence": 6
},
"metadata": {
"Name": "metadata",
"Type": "json",
"Sequence": 7
},
"binary_data": {
"Name": "binary_data",
"Type": "bytea",
"Sequence": 8
}
},
"Constraints": {
"PK_type_samples_id": {
"Name": "PK_type_samples_id",
"Type": "PRIMARY_KEY",
"Columns": ["id"]
}
}
}
]
}
]
}
```
Convert to MSSQL:
```bash
./build/relspec convert \
--from json \
--from-path type_test.json \
--to mssql \
--to-path type_test.sql
cat type_test.sql
```
## Cleanup
Stop and remove the SQL Server container:
```bash
docker-compose down
# Clean up test files
rm -f test_output.* backup.json restore.sql
```
## Troubleshooting
### Container won't start
Check Docker daemon is running and database logs:
```bash
docker-compose logs mssql
```
### Connection refused errors
Wait for container to be healthy:
```bash
docker-compose ps
# Wait until STATUS shows "healthy"
# Or check manually
docker exec -it $(docker-compose ps -q mssql) \
/opt/mssql-tools/bin/sqlcmd \
-S localhost \
-U sa \
-P 'StrongPassword123!' \
-Q "SELECT @@VERSION"
```
### Test schema not found
Initialize the test schema:
```bash
docker exec -i $(docker-compose ps -q mssql) \
/opt/mssql-tools/bin/sqlcmd \
-S localhost \
-U sa \
-P 'StrongPassword123!' \
< test_data/mssql/test_schema.sql
```
### Connection string format issues
Use the correct format for connection strings:
- Default port: 1433
- Username: `sa`
- Password: `StrongPassword123!`
- Database: `RelSpecTest`
Format: `sqlserver://sa:StrongPassword123!@localhost:1433/RelSpecTest`
## Performance Notes
- Initial reader setup may take a few seconds
- Type mapping queries are cached within a single read operation
- Direct execution mode is atomic per table/constraint
- Large schemas (100+ tables) should complete in under 5 seconds
## Unit Test Verification
Run the MSSQL-specific tests:
```bash
# Type mapping tests
go test ./pkg/mssql/... -v
# Reader tests
go test ./pkg/readers/mssql/... -v
# Writer tests
go test ./pkg/writers/mssql/... -v
# All together
go test ./pkg/mssql/... ./pkg/readers/mssql/... ./pkg/writers/mssql/... -v
```
Expected output: All tests should PASS